import pandas as pd
import numpy as np
import scanpy as sc
from sklearn.metrics.cluster import normalized_mutual_info_score, adjusted_rand_score
from sklearn.metrics import homogeneity_score, completeness_score, fowlkes_mallows_score, silhouette_score, davies_bouldin_score, calinski_harabasz_score
from sklearn.metrics.cluster import contingency_matrix, pair_confusion_matrix
from src.utils import sankey_plot
from sklearn.decomposition import PCA
import kaleido
from sklearn.preprocessing import StandardScaler
import plotly.io as pio
import matplotlib.pyplot as plt
import seaborn as sns
Clustering Comparision
Preamble
= 'Data/'
DIR = ['PBMC1', 'PBMC2', 'PBMC3','PBMC4']
DATASET_NAMES = ['monocle', 'scanpy', 'scvi-tools', 'seurat', 'COTAN']
TOOLS = ['default', 'celltypist', 'antibody']
PARAMS_TUNING = 10 min_size_cluster
= pd.read_csv(f'{DIR}PBMC3/COTAN/default/clustering_labels.csv', index_col=0,usecols=["cell","cluster"])
labels_df ={"cluster": "cluster_COTAN"}, inplace=True)
labels_df.rename(columnsprint(labels_df.shape)
#print(labels_df.shape)
for tool in [t for t in TOOLS if t != 'COTAN']:
= pd.read_csv(f'{DIR}PBMC3/{tool}/default/clustering_labels.csv', index_col=0)
tool_labels_df = labels_df.merge(tool_labels_df, how='inner', on='cell')
labels_df ={"cluster": f"cluster_{tool}"}, inplace=True)
labels_df.rename(columns# print("labels_df size"+tool)
# print(labels_df.shape)
(10944, 1)
'cluster_COTAN'].value_counts() labels_df[
cluster_COTAN
3 1689
9 688
20 609
4 433
8 432
5 390
10 362
27 331
47 324
13 305
52 302
19 282
46 260
32 253
43 242
45 228
54 219
23 190
2 189
12 177
35 166
39 162
42 159
17 151
55 149
14 146
18 145
6 143
28 132
53 130
7 120
40 111
51 109
16 100
50 99
44 98
36 79
30 78
41 76
11 74
37 67
22 58
57 52
1 49
56 40
48 39
34 37
31 35
38 30
49 29
15 29
25 28
26 27
29 27
33 24
21 21
24 20
Name: count, dtype: int64
labels_df.shape
(3405, 5)
= drop_small_clusters(df = labels_df,min_size = min_size_cluster) labels_df
'cluster_COTAN - cluster_COTAN\n12 809\n16 462\n7 392\n18 272\n8 254\n4 177\n10 152\n11 145\n3 122\n19 117\n20 106\n5 97\n13 94\n6 77\n2 75\n21 55\n15 42\n17 35\n1 35\n14 28\n9 27\n23 22\n22 15\nName: count, dtype: int64'
"Index([15, 17, 1, 14, 9, 23, 22], dtype='int64', name='cluster_COTAN')"
'cluster_monocle - cluster_monocle\n1 1913\n2 1195\n3 298\nName: count, dtype: int64'
"Index([], dtype='int64', name='cluster_monocle')"
'cluster_scanpy - cluster_scanpy\n3 323\n1 315\n2 309\n4 286\n7 268\n6 261\n8 236\n5 233\n9 200\n10 182\n11 158\n12 144\n13 141\n14 105\n15 91\n16 77\n17 76\n18 1\nName: count, dtype: int64'
"Index([18], dtype='int64', name='cluster_scanpy')"
'cluster_scvi-tools - cluster_scvi-tools\n1 635\n2 467\n3 421\n4 390\n5 364\n6 283\n7 277\n8 149\n9 146\n10 101\n11 92\n12 80\nName: count, dtype: int64'
"Index([], dtype='int64', name='cluster_scvi-tools')"
'cluster_seurat - cluster_seurat\n1 879\n3 581\n2 504\n4 408\n5 273\n6 260\n7 153\n8 144\n9 129\n10 74\nName: count, dtype: int64'
"Index([], dtype='int64', name='cluster_seurat')"
# load and concat celltypist labels
= pd.read_csv(f'{DIR}{dataset}/celltypist/celltypist_labels.csv', index_col=0)
celltypist_df = celltypist_df.index.str[:-2]
celltypist_df.index = labels_df.merge(celltypist_df, how='inner', on='cell')
celltypist_df ={"cluster.ids": f"cluster_celltypist"}, inplace=True)
celltypist_df.rename(columns= pd.read_csv(f'{DIR}{dataset}/celltypist/celltypist_mapping.csv', index_col=0)
celltypist_mapping_df #print("celltypist_df size")
#print(celltypist_df.shape)
= drop_small_clusters(df = celltypist_df, min_size = min_size_cluster)
celltypist_df
# load and concat protein surface labels
= pd.read_csv(f'{DIR}{dataset}/antibody_annotation/antibody_labels_postproc.csv', index_col=0)
antibody_df = labels_df.merge(antibody_df, how='inner', on='cell')
antibody_df ={"cluster.ids": f"cluster_antibody"}, inplace=True)
antibody_df.rename(columns= pd.read_csv(f'{DIR}{dataset}/antibody_annotation/antibody_mapping.csv', index_col=1, encoding='latin1')
antibody_mapping_df #print("antibody_df size")
#print(antibody_df.shape)
= drop_small_clusters(df = antibody_df, min_size = min_size_cluster ) antibody_df
def drop_small_clusters(df, min_size):
for col in df.columns:
# Count the number of occurrences of each cluster
= df[col].value_counts()
cluster_counts #display(f'{col} - {cluster_counts}')
# Find clusters that are smaller than the minimum size
= cluster_counts[cluster_counts < min_size].index
small_clusters #display(f'{small_clusters}')
# Drop rows corresponding to these clusters
= df[~df[col].isin(small_clusters)]
df return df
def compute_scores(dir, dataset, labels_df, labels_matched, ground_truth_labels):
= {}
scores 'NMI'] = {}
scores['ARI'] = {}
scores['homogeneity'] = {}
scores['completeness'] = {}
scores['fowlkes_mallows'] = {}
scores['precision'] = {}
scores['recall'] = {}
scores[
for tool in TOOLS:
'NMI'][tool] = normalized_mutual_info_score(labels_pred=labels_df['cluster_'+tool], labels_true=labels_df[f'cluster_{ground_truth_labels}'], average_method='arithmetic')
scores['ARI'][tool] = adjusted_rand_score(labels_pred=labels_df['cluster_'+tool], labels_true=labels_df[f'cluster_{ground_truth_labels}'])
scores['homogeneity'][tool] = homogeneity_score(labels_pred=labels_df['cluster_'+tool], labels_true=labels_df[f'cluster_{ground_truth_labels}'])
scores['completeness'][tool] = completeness_score(labels_pred=labels_df['cluster_'+tool], labels_true=labels_df[f'cluster_{ground_truth_labels}'])
scores['fowlkes_mallows'][tool] = fowlkes_mallows_score(labels_pred=labels_df['cluster_'+tool], labels_true=labels_df[f'cluster_{ground_truth_labels}'])
scores[= pair_confusion_matrix(labels_pred=labels_df['cluster_'+tool], labels_true=labels_df[f'cluster_{ground_truth_labels}'])
sc = sc[1,1]
TP = sc[0,1]
FP = sc[1,0]
FN = TP/(TP+FP)
P_score 'precision'][tool] = P_score
scores['recall'][tool] = TP/(TP+FN)
scores[
= pd.DataFrame(scores)
scores_df f'{dir}{dataset}/scores_{labels_matched}_{ground_truth_labels}.csv')
scores_df.to_csv(f'{dir}{dataset}/scores_{labels_matched}_{ground_truth_labels}.tex')
scores_df.to_latex(
display(scores_df)
def print_scores(dataset,tuning):
# concat tools labels
= pd.read_csv(f'{DIR}{dataset}/COTAN/{tuning}/clustering_labels.csv', index_col=0)
labels_df ={"cluster": "cluster_COTAN"}, inplace=True)
labels_df.rename(columns#print("labels_df size")
#print(labels_df.shape)
for tool in [t for t in TOOLS if t != 'COTAN']:
= pd.read_csv(f'{DIR}{dataset}/{tool}/{tuning}/clustering_labels.csv', index_col=0)
tool_labels_df = labels_df.merge(tool_labels_df, how='inner', on='cell')
labels_df ={"cluster": f"cluster_{tool}"}, inplace=True)
labels_df.rename(columns# print("labels_df size"+tool)
# print(labels_df.shape)
= drop_small_clusters(df = labels_df,min_size = min_size_cluster)
labels_df
# load and concat celltypist labels
= pd.read_csv(f'{DIR}{dataset}/celltypist/celltypist_labels.csv', index_col=0)
celltypist_df = celltypist_df.index.str[:-2]
celltypist_df.index = labels_df.merge(celltypist_df, how='inner', on='cell')
celltypist_df ={"cluster.ids": f"cluster_celltypist"}, inplace=True)
celltypist_df.rename(columns= pd.read_csv(f'{DIR}{dataset}/celltypist/celltypist_mapping.csv', index_col=0)
celltypist_mapping_df #print("celltypist_df size")
#print(celltypist_df.shape)
= drop_small_clusters(df = celltypist_df, min_size = min_size_cluster)
celltypist_df
# load and concat protein surface labels
= pd.read_csv(f'{DIR}{dataset}/antibody_annotation/antibody_labels_postproc.csv', index_col=0)
antibody_df = labels_df.merge(antibody_df, how='inner', on='cell')
antibody_df ={"cluster.ids": f"cluster_antibody"}, inplace=True)
antibody_df.rename(columns= pd.read_csv(f'{DIR}{dataset}/antibody_annotation/antibody_mapping.csv', index_col=1, encoding='latin1')
antibody_mapping_df #print("antibody_df size")
#print(antibody_df.shape)
= drop_small_clusters(df = antibody_df, min_size = min_size_cluster )
antibody_df
# read dataset
= sc.read_10x_mtx(
adata f'{DIR}{dataset}/filtered/10X/',
='gene_symbols',
var_names=False
cache
)# keep only labelled cells
adata.var_names_make_unique()if tuning=='celltypist':
= adata.obs_names.isin(celltypist_df.index)
subset_cells = adata[subset_cells, :]
adata elif tuning=='antibody':
= adata.obs_names.isin(antibody_df.index)
subset_cells = adata[subset_cells, :]
adata else:
= adata.obs_names.isin(labels_df.index)
subset_cells = adata[subset_cells, :]
adata
= adata.var_names.str.startswith('MT-')
mito_genes # for each cell compute fraction of counts in mito genes vs. all genes
# the `.A1` is only necessary as X is sparse (to transform to a dense array after summing)
'percent_mito'] = np.sum(adata[:, mito_genes].X, axis=1).A1 / np.sum(adata.X, axis=1).A1
adata.obs[# add the total counts per cell as observations-annotation to adata
'n_counts'] = adata.X.sum(axis=1).A1
adata.obs[
=1e4)
sc.pp.normalize_total(adata, target_sum
sc.pp.log1p(adata)=0.00125, max_mean=3, min_disp=0.5)
sc.pp.highly_variable_genes(adata, min_mean= adata
adata.raw = adata[:, adata.var.highly_variable]
adata #sc.pp.regress_out(adata, ['n_counts', 'percent_mito'])
=10)
sc.pp.scale(adata, max_value='arpack',n_comps=20)
sc.tl.pca(adata, svd_solver= adata.obsm['X_pca']
pca_matrix = StandardScaler()
scaler = scaler.fit_transform(pca_matrix)
scaled_pca_matrix
#Custers number
= {}
df for tool in TOOLS:
= labels_df[f'cluster_{tool}'].unique().shape[0]
df[tool] = pd.DataFrame(df, index=[0])
df_size f'{dataset} - number of clusters')
display(
display(df_size)
# compute silhouette, Calinski_Harabasz and davies_bouldin scores with scaled PCA
= {}
silhouette = {}
Calinski_Harabasz = {}
davies_bouldin for tool in TOOLS:
if tuning=='celltypist':
# Convert scaled_pca_matrix to DataFrame to filter by index
#scaled_pca_matrix_df = pd.DataFrame(scaled_pca_matrix, index=adata.obs_names)
# Filter PCA matrix based on celltypist_df index
#scaled_pca_matrix_filtered = scaled_pca_matrix_df.loc[celltypist_df.index]
# Convert back to numpy array for compatibility with metrics
#scaled_pca_matrix = scaled_pca_matrix_filtered.values
= silhouette_score(scaled_pca_matrix, celltypist_df[f'cluster_{tool}'])
silhouette[tool] = calinski_harabasz_score(scaled_pca_matrix, celltypist_df[f'cluster_{tool}'])
Calinski_Harabasz[tool] = davies_bouldin_score(scaled_pca_matrix, celltypist_df[f'cluster_{tool}'])
davies_bouldin[tool]
'celltypist'] = silhouette_score(scaled_pca_matrix, celltypist_df[f'cluster_celltypist'])
silhouette['celltypist'] = calinski_harabasz_score(scaled_pca_matrix, celltypist_df[f'cluster_celltypist'])
Calinski_Harabasz['celltypist'] = davies_bouldin_score(scaled_pca_matrix, celltypist_df[f'cluster_celltypist'])
davies_bouldin[elif tuning=='antibody':
# Repeat similar steps for antibody_df
#scaled_pca_matrix_df = pd.DataFrame(scaled_pca_matrix, index=adata.obs_names)
#scaled_pca_matrix_filtered = scaled_pca_matrix_df.loc[antibody_df.index]
#scaled_pca_matrix = scaled_pca_matrix_filtered.values
= silhouette_score(scaled_pca_matrix, antibody_df[f'cluster_{tool}'])
silhouette[tool] = calinski_harabasz_score(scaled_pca_matrix, antibody_df[f'cluster_{tool}'])
Calinski_Harabasz[tool] = davies_bouldin_score(scaled_pca_matrix, antibody_df[f'cluster_{tool}'])
davies_bouldin[tool]
'antibody'] = silhouette_score(scaled_pca_matrix, antibody_df[f'cluster_antibody'])
silhouette['antibody'] = calinski_harabasz_score(scaled_pca_matrix, antibody_df[f'cluster_antibody'])
Calinski_Harabasz['antibody'] = davies_bouldin_score(scaled_pca_matrix, antibody_df[f'cluster_antibody'])
davies_bouldin[
else:
= silhouette_score(scaled_pca_matrix, labels_df[f'cluster_{tool}'])
silhouette[tool] = calinski_harabasz_score(scaled_pca_matrix, labels_df[f'cluster_{tool}'])
Calinski_Harabasz[tool] = davies_bouldin_score(scaled_pca_matrix, labels_df[f'cluster_{tool}'])
davies_bouldin[tool]
= pd.DataFrame(silhouette, index=[0])
silhouette_df f'{DIR}{dataset}/{tuning}_silhouette.csv')
silhouette_df.to_csv(f'{DIR}{dataset}/{tuning}_silhouette.tex')
silhouette_df.to_latex(f'{dataset} - Silhuette (higher is better)')
display(
display(silhouette_df)
= pd.DataFrame(Calinski_Harabasz, index=[0])
Calinski_Harabasz_df f'{DIR}{dataset}/{tuning}_Calinski_Harabasz.csv')
Calinski_Harabasz_df.to_csv(f'{DIR}{dataset}/{tuning}_Calinski_Harabasz.tex')
Calinski_Harabasz_df.to_latex(f'{dataset} - Calinski_Harabasz (higher is better)')
display(
display(Calinski_Harabasz_df)
= pd.DataFrame(davies_bouldin, index=[0])
davies_bouldin_df f'{DIR}{dataset}/{tuning}_davies_bouldin.csv')
davies_bouldin_df.to_csv(f'{DIR}{dataset}/{tuning}_davies_bouldin.tex')
davies_bouldin_df.to_latex(f'{dataset} - davies_bouldin (lower is better)')
display(
display(davies_bouldin_df)
# compute silhouette, Calinski_Harabasz and davies_bouldin scores with cellTypist probability
= pd.read_csv(f'{DIR}{dataset}/celltypist/Immune_All_Low_probability_matrix.csv', index_col=0)
celltypist_prob_df #labels_df = pd.read_csv(f'{DIR}{dataset}/COTAN/{tuning}/clustering_labels.csv', index_col=0)
= celltypist_prob_df.index.str[:-2]
celltypist_prob_df.index #subset_cells = celltypist_prob_df.index.isin(labels_df.index)
#celltypist_prob_df = celltypist_prob_df[subset_cells]
if tuning=='celltypist':
= celltypist_prob_df.index.isin(celltypist_df.index)
subset_cells = celltypist_prob_df[subset_cells]
celltypist_prob_df elif tuning=='antibody':
= celltypist_prob_df.index.isin(antibody_df.index)
subset_cells = celltypist_prob_df[subset_cells]
celltypist_prob_df else:
= celltypist_prob_df.index.isin(labels_df.index)
subset_cells = celltypist_prob_df[subset_cells]
celltypist_prob_df
= PCA(n_components=20,svd_solver='arpack')
pca = pca.fit_transform(celltypist_prob_df)
pca_data = pd.DataFrame(pca_data)
df_prob = celltypist_prob_df.index
df_prob.index = StandardScaler()
scaler = pd.DataFrame(scaler.fit_transform(df_prob))
scaled_pca_data = celltypist_prob_df.index
scaled_pca_data.index
= {}
silhouette = {}
Calinski_Harabasz = {}
davies_bouldin for tool in TOOLS:
if tuning=='celltypist':
# Convert scaled_pca_matrix to DataFrame to filter by index
#scaled_pca_matrix_df = pd.DataFrame(scaled_pca_matrix, index=adata.obs_names)
# Filter PCA matrix based on celltypist_df index
#scaled_pca_matrix_filtered = scaled_pca_matrix_df.loc[celltypist_df.index]
# Convert back to numpy array for compatibility with metrics
#scaled_pca_matrix = scaled_pca_matrix_filtered.values
= silhouette_score(scaled_pca_data, celltypist_df[f'cluster_{tool}'])
silhouette[tool] = calinski_harabasz_score(scaled_pca_data, celltypist_df[f'cluster_{tool}'])
Calinski_Harabasz[tool] = davies_bouldin_score(scaled_pca_data, celltypist_df[f'cluster_{tool}'])
davies_bouldin[tool]
'celltypist'] = silhouette_score(scaled_pca_data, celltypist_df[f'cluster_celltypist'])
silhouette['celltypist'] = calinski_harabasz_score(scaled_pca_data, celltypist_df[f'cluster_celltypist'])
Calinski_Harabasz['celltypist'] = davies_bouldin_score(scaled_pca_data, celltypist_df[f'cluster_celltypist'])
davies_bouldin[elif tuning=='antibody':
# Repeat similar steps for antibody_df
#scaled_pca_matrix_df = pd.DataFrame(scaled_pca_matrix, index=adata.obs_names)
#scaled_pca_matrix_filtered = scaled_pca_matrix_df.loc[antibody_df.index]
#scaled_pca_matrix = scaled_pca_matrix_filtered.values
= silhouette_score(scaled_pca_data, antibody_df[f'cluster_{tool}'])
silhouette[tool] = calinski_harabasz_score(scaled_pca_data, antibody_df[f'cluster_{tool}'])
Calinski_Harabasz[tool] = davies_bouldin_score(scaled_pca_data, antibody_df[f'cluster_{tool}'])
davies_bouldin[tool]
'antibody'] = silhouette_score(scaled_pca_data, antibody_df[f'cluster_antibody'])
silhouette['antibody'] = calinski_harabasz_score(scaled_pca_data, antibody_df[f'cluster_antibody'])
Calinski_Harabasz['antibody'] = davies_bouldin_score(scaled_pca_data, antibody_df[f'cluster_antibody'])
davies_bouldin[
else:
= silhouette_score(scaled_pca_data, labels_df[f'cluster_{tool}'])
silhouette[tool] = calinski_harabasz_score(scaled_pca_data, labels_df[f'cluster_{tool}'])
Calinski_Harabasz[tool] = davies_bouldin_score(scaled_pca_data, labels_df[f'cluster_{tool}'])
davies_bouldin[tool]
= pd.DataFrame(silhouette, index=[0])
silhouette_df f'{DIR}{dataset}/{tuning}_silhouette_fromProb.csv')
silhouette_df.to_csv(f'{DIR}{dataset}/{tuning}_silhouette_fromProb.tex')
silhouette_df.to_latex(f'{dataset} - Silhuette from Prob. (higher is better)')
display(
display(silhouette_df)
= pd.DataFrame(Calinski_Harabasz, index=[0])
Calinski_Harabasz_df f'{DIR}{dataset}/{tuning}_Calinski_Harabasz_fromProb.csv')
Calinski_Harabasz_df.to_csv(f'{DIR}{dataset}/{tuning}_Calinski_Harabasz_fromProb.tex')
Calinski_Harabasz_df.to_latex(f'{dataset} - Calinski_Harabasz from Prob. (higher is better)')
display(
display(Calinski_Harabasz_df)
= pd.DataFrame(davies_bouldin, index=[0])
davies_bouldin_df f'{DIR}{dataset}/{tuning}_davies_bouldin_fromProb.csv')
davies_bouldin_df.to_csv(f'{DIR}{dataset}/{tuning}_davies_bouldin_fromProb.tex')
davies_bouldin_df.to_latex(f'{dataset} - davies_bouldin from Prob. (lower is better)')
display(
display(davies_bouldin_df)
f'{dataset} - matching {tuning} labels' if tuning != 'default' else f'{dataset} - default labels')
display(
# compute scores comparing each tool labels with celltypist labels
if tuning == 'celltypist' or tuning == 'default':
'celltypist')
compute_scores(DIR, dataset, celltypist_df, tuning, = []
labels = []
labels_titles for tool in TOOLS:
f'cluster_{tool}'].to_list())
labels.append(celltypist_df[
labels_titles.append(tool)f'cluster_celltypist'].map(celltypist_mapping_df['go'].to_dict()).to_list())
labels.append(celltypist_df['celltypist')
labels_titles.append(= f'{dataset} - matching {tuning} labels' if tuning != 'default' else f'{dataset} - default labels'
title =labels, labels_titles=labels_titles, title=title, path=f'{DIR}{dataset}/{tuning}_celltypist.html')
sankey_plot(labels
# compute scores comparing each tool labels with protein labels
if tuning == 'antibody' or tuning == 'default':
'antibody')
compute_scores(DIR, dataset, antibody_df, tuning, = []
labels = []
labels_titles for tool in TOOLS:
f'cluster_{tool}'].to_list())
labels.append(antibody_df[
labels_titles.append(tool)f'cluster_antibody'].map(antibody_mapping_df['go'].to_dict()).to_list())
labels.append(antibody_df['antibody')
labels_titles.append(= f'{dataset} - matching {tuning} labels' if tuning != 'default' else f'{dataset} - default labels'
title =labels, labels_titles=labels_titles, title=title, path=f'{DIR}{dataset}/{tuning}_antibody.html') sankey_plot(labels
def print_clustering_data(dataset,tuning):
# concat tools labels
= pd.read_csv(f'{DIR}{dataset}/COTAN/{tuning}/clustering_labels.csv', index_col=0)
labels_df ={"cluster": "cluster_COTAN"}, inplace=True)
labels_df.rename(columnsf'Initial COTAN cluster number:')
display(0])
display(labels_df.cluster_COTAN.unique().shape[#print("labels_df size")
#print(labels_df.shape)
for tool in [t for t in TOOLS if t != 'COTAN']:
= pd.read_csv(f'{DIR}{dataset}/{tool}/{tuning}/clustering_labels.csv', index_col=0)
tool_labels_df f'Initial {tool} cluster number:')
display(-1]].unique().shape[0])
display(labels_df[labels_df.columns[= labels_df.merge(tool_labels_df, how='inner', on='cell')
labels_df ={"cluster": f"cluster_{tool}"}, inplace=True)
labels_df.rename(columns
= drop_small_clusters(df = labels_df,min_size = min_size_cluster)
labels_df # print("labels_df size"+tool)
# print(labels_df.shape)
if tuning == 'celltypist' or tuning == 'default':
# load and concat celltypist labels
= pd.read_csv(f'{DIR}{dataset}/celltypist/celltypist_labels.csv', index_col=0)
celltypist_df = celltypist_df.index.str[:-2]
celltypist_df.index = labels_df.merge(celltypist_df, how='inner', on='cell')
celltypist_df ={"cluster.ids": f"cluster_celltypist"}, inplace=True)
celltypist_df.rename(columns= pd.read_csv(f'{DIR}{dataset}/celltypist/celltypist_mapping.csv', index_col=0)
celltypist_mapping_df
= drop_small_clusters(df = celltypist_df, min_size = min_size_cluster)
celltypist_df
#print("celltypist_df size")
#print(celltypist_df.shape)
= np.unique(celltypist_df["cluster_celltypist"])
labels_cluster_celltypist for tool in TOOLS:
= np.unique(celltypist_df[f'cluster_{tool}'])
labels_cluster_tool =contingency_matrix(celltypist_df["cluster_celltypist"], celltypist_df[f'cluster_{tool}'])
cm = pd.DataFrame(cm,index=labels_cluster_celltypist,columns=labels_cluster_tool)
cm f'{dataset} - contingency_matrix (rows: cellTypist - cols: {tool})')
display(
display(cm)
if tuning == 'antibody' or tuning == 'default':
#load and concat protein surface labels
= pd.read_csv(f'{DIR}{dataset}/antibody_annotation/antibody_labels_postproc.csv', index_col=0)
antibody_df "Initial antibody cell/cluster table:")
display("cluster.ids"].value_counts())
display(antibody_df[= labels_df.merge(antibody_df, how='inner', on='cell')
antibody_df ={"cluster.ids": f"cluster_antibody"}, inplace=True)
antibody_df.rename(columns
= drop_small_clusters(df = antibody_df, min_size = min_size_cluster )
antibody_df
= pd.read_csv(f'{DIR}{dataset}/antibody_annotation/antibody_mapping.csv', index_col=1, encoding='latin1')
antibody_mapping_df = np.unique(antibody_df["cluster_antibody"])
labels_cluster_antybody for tool in TOOLS:
= np.unique(antibody_df[f'cluster_{tool}'])
labels_cluster_tool =contingency_matrix(antibody_df["cluster_antibody"], antibody_df[f'cluster_{tool}'])
cm = pd.DataFrame(cm,index=labels_cluster_antybody,columns=labels_cluster_tool)
cm f'{dataset} - contingency_matrix (rows: antibody - cols: {tool})')
display(
display(cm)
Data summary information
Default parameters
= 'default',dataset="PBMC1") print_clustering_data(tuning
'Initial COTAN cluster number:'
23
'Initial monocle cluster number:'
1
'Initial scanpy cluster number:'
3
'Initial scvi-tools cluster number:'
18
'Initial seurat cluster number:'
13
'PBMC1 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | 3 | |
---|---|---|---|
1 | 8 | 970 | 1 |
2 | 943 | 0 | 0 |
3 | 47 | 0 | 0 |
4 | 0 | 78 | 0 |
5 | 309 | 0 | 0 |
6 | 0 | 0 | 142 |
7 | 82 | 0 | 0 |
8 | 278 | 0 | 1 |
9 | 81 | 0 | 0 |
10 | 0 | 171 | 0 |
11 | 70 | 0 | 0 |
12 | 240 | 0 | 0 |
13 | 0 | 28 | 0 |
14 | 0 | 0 | 155 |
'PBMC1 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 246 | 0 | 267 | 0 | 263 | 0 | 200 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
2 | 88 | 321 | 0 | 281 | 1 | 0 | 0 | 241 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 8 | 0 | 0 |
3 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 76 | 0 |
5 | 250 | 5 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 138 | 0 | 0 | 0 | 0 | 0 |
7 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 37 | 0 | 18 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 263 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 2 | 2 | 0 | 5 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 66 | 0 | 0 |
10 | 0 | 0 | 75 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 82 | 0 | 59 | 0 | 86 | 0 | 3 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 154 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 659 | 0 | 0 | 0 | 289 | 0 | 1 | 0 | 0 | 30 | 0 | 0 | 0 |
2 | 0 | 485 | 48 | 402 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 |
3 | 0 | 1 | 41 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
5 | 0 | 5 | 288 | 12 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 139 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 58 | 0 | 0 | 23 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 279 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 4 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 73 | 0 |
10 | 1 | 0 | 0 | 0 | 78 | 0 | 0 | 0 | 0 | 0 | 92 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 67 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 1 | 48 | 1 | 0 | 189 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
14 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 147 | 7 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 616 | 361 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
2 | 798 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 74 | 0 |
5 | 0 | 309 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 142 | 0 | 0 | 0 |
7 | 0 | 55 | 0 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 274 | 5 | 0 | 0 | 0 | 0 | 0 |
9 | 78 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 43 | 0 | 0 | 0 | 0 | 128 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 5 | 65 | 0 | 0 | 0 | 0 | 0 |
12 | 7 | 69 | 0 | 0 | 0 | 164 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 27 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 153 | 2 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 35 | 0 | 0 | 175 | 97 | 75 | 389 | 207 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 20 | 24 | 56 | 29 | 0 | 0 | 0 | 0 | 3 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 9 | 1 | 0 | 0 | 0 | 6 | 7 | 21 |
4 | 0 | 73 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 7 | 8 | 290 | 3 | 0 | 0 | 0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 56 | 0 | 25 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 3 | 1 | 0 | 4 | 115 | 104 | 47 | 5 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 1 | 122 | 0 | 0 | 2 | 3 | 42 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 67 | 0 | 2 | 1 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 5 | 50 | 1 | 175 | 0 | 0 | 1 | 0 | 0 |
13 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 152 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 rows × 23 columns
'Initial antibody cell/cluster table:'
cluster.ids
7 1338
8 876
3 748
4 341
9 331
5 211
1 202
6 131
2 62
10 51
12 16
Name: count, dtype: int64
'PBMC1 - contingency_matrix (rows: antibody - cols: monocle)'
1 | 2 | 3 | |
---|---|---|---|
1 | 161 | 0 | 0 |
2 | 0 | 43 | 3 |
3 | 600 | 0 | 0 |
4 | 262 | 1 | 0 |
5 | 158 | 0 | 0 |
6 | 1 | 86 | 0 |
7 | 10 | 1115 | 0 |
8 | 812 | 1 | 1 |
9 | 1 | 0 | 294 |
10 | 44 | 0 | 0 |
12 | 10 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 7 | 6 | 0 | 4 | 0 | 0 | 0 | 9 | 0 | 23 | 0 | 7 | 0 | 32 | 0 | 73 | 0 | 0 |
2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 38 | 0 | 0 | 0 |
3 | 366 | 33 | 0 | 5 | 0 | 0 | 0 | 28 | 0 | 43 | 0 | 122 | 0 | 3 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 1 | 249 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 64 | 0 | 15 | 0 | 68 | 0 | 0 | 0 | 0 |
6 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 56 | 26 |
7 | 1 | 0 | 319 | 0 | 267 | 0 | 267 | 1 | 198 | 0 | 0 | 0 | 0 | 0 | 52 | 0 | 19 | 1 |
8 | 18 | 288 | 0 | 277 | 0 | 1 | 0 | 214 | 0 | 3 | 1 | 5 | 0 | 2 | 0 | 4 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 156 | 0 | 137 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 6 | 12 | 5 | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 76 | 0 |
2 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 1 | 0 | 39 | 0 | 0 |
3 | 0 | 49 | 441 | 66 | 0 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 262 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 2 | 12 | 1 | 0 | 141 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
6 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 56 | 1 | 0 | 26 |
7 | 655 | 3 | 0 | 0 | 368 | 0 | 1 | 0 | 0 | 45 | 52 | 0 | 1 |
8 | 0 | 438 | 17 | 349 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 2 | 1 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 148 | 144 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 1 | 0 | 0 | 37 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 93 | 17 | 0 | 0 | 0 | 51 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 1 | 39 | 0 | 0 |
3 | 23 | 540 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 260 | 2 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 28 | 0 | 0 | 0 | 129 | 0 | 0 | 0 | 0 | 0 |
6 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 56 | 25 |
7 | 2 | 1 | 611 | 402 | 1 | 0 | 0 | 0 | 89 | 18 | 1 |
8 | 766 | 41 | 0 | 0 | 1 | 4 | 1 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 2 | 0 | 151 | 142 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 8 | 36 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 8 | 2 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 2 | 10 | 0 | 54 | 0 | 0 | 1 | 0 | 0 |
2 | 1 | 1 | 38 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 26 | 23 | 417 | 25 | 39 | 0 | 0 | 6 | 10 | 22 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 1 | 113 | 99 | 45 | 4 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 20 | 0 | 135 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 56 | 1 | 1 | 0 | 0 | 0 | 1 | 25 | 0 | ... | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 33 | 17 | 83 | 175 | 96 | 76 | 389 | 251 | 1 | 0 | ... | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ... | 1 | 12 | 14 | 9 | 4 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 38 | 0 | 3 | 2 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 2 | 1 | 0 | 1 | 2 | 4 | 0 | 0 | 0 |
11 rows × 23 columns
= 'default',dataset="PBMC2") print_clustering_data(tuning
'Initial COTAN cluster number:'
31
'Initial monocle cluster number:'
1
'Initial scanpy cluster number:'
2
'Initial scvi-tools cluster number:'
18
'Initial seurat cluster number:'
20
'PBMC2 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | |
---|---|---|
1 | 230 | 1 |
2 | 427 | 0 |
3 | 2139 | 3 |
4 | 700 | 7 |
5 | 316 | 0 |
6 | 0 | 93 |
7 | 0 | 567 |
8 | 674 | 0 |
9 | 0 | 186 |
10 | 52 | 0 |
11 | 0 | 228 |
12 | 0 | 204 |
13 | 0 | 48 |
14 | 0 | 14 |
15 | 80 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 22 | 1 | 2 | 5 | 50 | 0 | 148 | 0 | 0 | 0 | 0 |
2 | 0 | 91 | 0 | 273 | 0 | 0 | 0 | 3 | 2 | 0 | 56 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
3 | 942 | 508 | 21 | 183 | 0 | 0 | 0 | 21 | 295 | 2 | 100 | 42 | 0 | 26 | 1 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 1 | 0 | 463 | 8 | 2 | 0 | 230 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 266 | 0 | 0 | 42 | 0 | 0 | 6 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 88 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 466 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 86 | 0 | 0 | 0 |
8 | 2 | 1 | 558 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 110 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 174 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
15 | 0 | 25 | 0 | 46 | 0 | 0 | 0 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 222 | 1 | 2 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 331 | 4 | 1 | 0 | 0 | 0 | 7 | 10 | 53 | 0 | 0 | 1 | 0 | 10 | 4 | 0 | 6 | 0 | 0 | 0 |
3 | 391 | 733 | 2 | 1 | 19 | 1 | 41 | 304 | 158 | 185 | 0 | 2 | 43 | 90 | 75 | 0 | 71 | 0 | 0 | 26 |
4 | 1 | 0 | 675 | 1 | 0 | 8 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 |
5 | 7 | 0 | 1 | 0 | 0 | 0 | 11 | 9 | 66 | 0 | 0 | 151 | 71 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 78 | 0 | 0 | 3 | 0 |
7 | 0 | 0 | 0 | 564 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 2 | 0 | 1 | 561 | 0 | 103 | 1 | 0 | 2 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 175 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 2 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 44 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 58 | 0 | 1 | 0 | 0 | 0 | 5 | 5 | 1 | 5 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 4 | 6 | 0 | 0 | 0 | 219 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
2 | 0 | 400 | 23 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
3 | 1151 | 352 | 550 | 0 | 2 | 15 | 69 | 1 | 0 | 0 | 0 | 2 | 0 | 0 |
4 | 0 | 0 | 2 | 635 | 0 | 0 | 3 | 7 | 0 | 0 | 1 | 59 | 0 | 0 |
5 | 0 | 42 | 0 | 0 | 0 | 0 | 7 | 0 | 267 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82 | 0 |
7 | 0 | 0 | 0 | 0 | 567 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 8 | 4 | 2 | 0 | 0 | 541 | 119 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 172 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 83 | 0 | 0 | 145 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 201 | 1 | 0 | 2 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 |
15 | 0 | 0 | 77 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 25 | 54 | 3 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 2 | 0 | 0 | 0 | 1172 | 14 | 56 | 7 | 10 | 3 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 56 | 141 | 383 | 115 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | 270 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ... | 36 | 111 | 211 | 150 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 6 | 562 | 2 | 78 | 17 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
10 | 51 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 141 | 72 | 13 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 8 | 47 | 2 | 50 | 96 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 3 |
15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 rows × 31 columns
'Initial antibody cell/cluster table:'
cluster.ids
4 1510
11 1130
8 695
12 570
6 424
13 275
5 197
2 150
10 122
3 84
7 76
Name: count, dtype: int64
'PBMC2 - contingency_matrix (rows: antibody - cols: monocle)'
1 | 2 | |
---|---|---|
2 | 0 | 145 |
3 | 60 | 19 |
4 | 1480 | 5 |
5 | 196 | 0 |
6 | 416 | 1 |
7 | 68 | 5 |
8 | 680 | 3 |
10 | 0 | 115 |
11 | 1115 | 7 |
12 | 566 | 2 |
13 | 0 | 262 |
'PBMC2 - contingency_matrix (rows: antibody - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 141 | 0 | 0 |
3 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 54 | 0 | 0 | 18 | 2 | 0 |
4 | 89 | 588 | 0 | 478 | 0 | 0 | 0 | 56 | 63 | 0 | 194 | 10 | 0 | 3 | 4 |
5 | 7 | 1 | 14 | 2 | 0 | 0 | 0 | 118 | 2 | 2 | 4 | 23 | 0 | 23 | 0 |
6 | 0 | 2 | 9 | 13 | 0 | 0 | 1 | 128 | 1 | 0 | 3 | 124 | 0 | 136 | 0 |
7 | 1 | 3 | 27 | 3 | 0 | 0 | 0 | 6 | 1 | 0 | 1 | 23 | 0 | 3 | 5 |
8 | 0 | 0 | 0 | 0 | 0 | 459 | 2 | 0 | 0 | 220 | 0 | 0 | 2 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 106 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 6 |
11 | 843 | 26 | 5 | 5 | 0 | 0 | 5 | 4 | 229 | 0 | 1 | 2 | 0 | 0 | 2 |
12 | 2 | 0 | 522 | 0 | 0 | 0 | 2 | 1 | 1 | 2 | 0 | 21 | 0 | 17 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 262 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: antibody - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 55 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
4 | 758 | 143 | 0 | 0 | 0 | 0 | 30 | 125 | 259 | 51 | 0 | 5 | 4 | 54 | 26 | 4 | 23 | 0 | 3 |
5 | 4 | 8 | 1 | 0 | 5 | 0 | 27 | 4 | 6 | 0 | 0 | 36 | 105 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 4 | 0 | 0 | 0 | 17 | 0 | 270 | 2 | 9 | 0 | 0 | 112 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 1 | 0 | 1 | 31 | 0 | 27 | 2 | 1 | 1 | 0 | 5 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
8 | 0 | 0 | 622 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 56 | 0 |
10 | 0 | 0 | 0 | 107 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
11 | 14 | 581 | 0 | 0 | 5 | 5 | 2 | 191 | 5 | 138 | 0 | 0 | 1 | 50 | 51 | 2 | 54 | 0 | 23 |
12 | 0 | 2 | 1 | 0 | 520 | 2 | 34 | 1 | 0 | 1 | 0 | 0 | 6 | 0 | 0 | 0 | 1 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 262 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: antibody - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 139 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 9 | 1 | 1 | 1 | 0 | 0 | 18 | 0 | 48 | 0 |
4 | 65 | 756 | 607 | 0 | 0 | 0 | 10 | 0 | 42 | 0 | 0 | 1 | 4 |
5 | 6 | 6 | 2 | 0 | 0 | 12 | 65 | 0 | 104 | 0 | 0 | 1 | 0 |
6 | 0 | 22 | 3 | 0 | 0 | 7 | 267 | 0 | 118 | 0 | 0 | 0 | 0 |
7 | 2 | 7 | 5 | 0 | 0 | 21 | 30 | 0 | 3 | 0 | 0 | 0 | 5 |
8 | 0 | 0 | 0 | 627 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 52 | 0 |
10 | 0 | 0 | 0 | 0 | 109 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 |
11 | 1073 | 4 | 35 | 0 | 0 | 1 | 1 | 4 | 1 | 0 | 1 | 0 | 2 |
12 | 9 | 0 | 0 | 0 | 0 | 512 | 44 | 1 | 0 | 0 | 1 | 1 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 159 | 1 | 0 | 102 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: antibody - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 19 | 20 | 21 | 23 | 24 | 25 | 28 | 29 | 30 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 4 | 136 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 |
3 | 49 | 0 | 4 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | ... | 17 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 76 | 0 | 1 | 5 | 6 | 44 | ... | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 9 | 10 | 37 | 3 | 4 | 105 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 11 | 11 | 81 | 64 | 120 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 1 | 31 | 0 | 14 | 1 | 4 | ... | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 50 | 140 | 378 | 112 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 3 | 5 | 26 | 59 | 22 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 1081 | 1 | 0 | 0 | 0 | 1 | ... | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 2 | 1 |
12 | 1 | 0 | 0 | 0 | 6 | 520 | 11 | 9 | 9 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 102 | 59 | 69 |
11 rows × 26 columns
= 'default',dataset="PBMC3") print_clustering_data(tuning
'Initial COTAN cluster number:'
57
'Initial monocle cluster number:'
1
'Initial scanpy cluster number:'
3
'Initial scvi-tools cluster number:'
22
'Initial seurat cluster number:'
17
'PBMC3 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | 3 | |
---|---|---|---|
1 | 3021 | 0 | 0 |
2 | 1 | 1471 | 0 |
3 | 6 | 1 | 655 |
4 | 1100 | 0 | 0 |
5 | 1183 | 26 | 33 |
6 | 0 | 156 | 0 |
7 | 1112 | 1 | 0 |
8 | 484 | 0 | 0 |
9 | 0 | 0 | 396 |
10 | 0 | 408 | 0 |
11 | 430 | 0 | 0 |
13 | 233 | 0 | 0 |
14 | 111 | 0 | 0 |
15 | 4 | 16 | 0 |
16 | 0 | 11 | 0 |
18 | 0 | 57 | 0 |
19 | 0 | 12 | 0 |
'PBMC3 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1401 | 0 | 153 | 0 | 0 | 29 | 26 | 534 | 121 | 429 | ... | 1 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
2 | 0 | 0 | 0 | 0 | 816 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 2 | 0 | 227 | 0 | 5 | 0 | 35 | 0 | 0 |
3 | 0 | 0 | 0 | 543 | 0 | 0 | 0 | 0 | 5 | 0 | ... | 0 | 0 | 0 | 0 | 111 | 0 | 0 | 2 | 0 | 0 |
4 | 26 | 0 | 0 | 0 | 0 | 806 | 12 | 5 | 29 | 6 | ... | 0 | 0 | 155 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
5 | 0 | 961 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | ... | 216 | 0 | 0 | 29 | 33 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 147 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 683 | 0 | 0 | 0 | 7 | 128 | 236 | 15 | ... | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 423 | 0 | 32 | 0 | ... | 4 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 395 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 311 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
11 | 0 | 2 | 0 | 0 | 0 | 0 | 281 | 2 | 54 | 0 | ... | 4 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 12 | 0 | 116 | 0 | 0 | 0 | 1 | 52 | 9 | 11 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 5 | 1 | 0 | 0 | 0 | 5 | 0 | 3 | 0 | ... | 97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
17 rows × 22 columns
'PBMC3 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 740 | 1603 | 2 | 1 | 1 | 40 | 86 | 23 | 248 | 1 | 197 | 79 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1460 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 4 | 2 | 655 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 6 | 11 | 0 | 1 | 1 | 912 | 162 | 2 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 29 | 1165 | 31 | 0 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 1 | 0 |
6 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 0 | 0 | 0 |
7 | 883 | 14 | 1 | 0 | 0 | 1 | 25 | 29 | 80 | 0 | 70 | 10 | 0 | 0 | 0 | 0 | 0 |
8 | 24 | 0 | 0 | 6 | 0 | 1 | 5 | 313 | 0 | 0 | 0 | 135 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 396 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 97 | 0 | 0 | 0 | 0 | 0 | 0 | 311 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 10 | 0 | 0 | 2 | 0 | 2 | 408 | 2 | 0 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0 |
13 | 174 | 26 | 0 | 0 | 0 | 0 | 3 | 0 | 25 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 1 | 19 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
18 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1740 | 415 | 0 | 0 | 681 | 20 | 162 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1013 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 227 | 0 | 229 | 3 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 535 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 120 | 0 | 0 |
4 | 16 | 6 | 0 | 0 | 3 | 886 | 188 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
5 | 0 | 1 | 4 | 1043 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 24 | 136 | 0 | 0 | 30 | 0 | 0 |
6 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 149 | 0 | 0 | 0 |
7 | 0 | 980 | 0 | 0 | 108 | 0 | 18 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 18 | 0 | 3 | 0 | 0 | 8 | 0 | 454 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 0 | 336 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
10 | 0 | 0 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 319 | 1 | 0 | 4 | 0 | 0 | 0 | 0 |
11 | 0 | 14 | 0 | 0 | 0 | 2 | 411 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 13 | 5 | 0 | 0 | 208 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 52 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
'PBMC3 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8 | 131 | 1674 | 5 | 9 | 2 | 47 | 40 | 87 | 291 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | ... | 32 | 25 | 94 | 108 | 268 | 104 | 2 | 7 | 15 | 0 |
4 | 40 | 52 | 10 | 428 | 380 | 0 | 0 | 2 | 7 | 5 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ... | 0 | 3 | 2 | 0 | 0 | 25 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 384 | 571 | 53 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 34 | 1 | 217 | 142 | 1 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 11 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 2 | 5 | 0 | 0 | 137 | 69 | 4 | 1 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 |
17 rows × 57 columns
'Initial antibody cell/cluster table:'
cluster.ids
9 2220
10 1635
7 1271
13 1067
5 1010
12 909
6 744
2 271
4 214
14 168
3 149
23 133
22 71
Name: count, dtype: int64
'PBMC3 - contingency_matrix (rows: antibody - cols: monocle)'
1 | 2 | 3 | |
---|---|---|---|
2 | 2 | 264 | 0 |
3 | 132 | 12 | 3 |
4 | 209 | 2 | 1 |
5 | 993 | 11 | 1 |
6 | 730 | 0 | 0 |
7 | 4 | 1223 | 0 |
9 | 2201 | 9 | 1 |
10 | 1614 | 8 | 3 |
12 | 902 | 2 | 1 |
13 | 2 | 41 | 1002 |
14 | 140 | 20 | 1 |
22 | 69 | 0 | 0 |
23 | 130 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: antibody - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 1 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 223 | 0 | 24 | 0 | 0 | 0 | 0 |
3 | 0 | 14 | 2 | 0 | 0 | 1 | 5 | 0 | 3 | 0 | 0 | 1 | 106 | 12 | 0 | 0 | 3 | 0 | 0 | 0 |
4 | 4 | 0 | 5 | 0 | 0 | 50 | 25 | 10 | 28 | 15 | 0 | 13 | 1 | 0 | 57 | 0 | 1 | 2 | 0 | 1 |
5 | 0 | 911 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 80 | 10 | 0 | 1 | 1 | 0 | 0 | 0 |
6 | 1 | 0 | 8 | 0 | 0 | 9 | 422 | 11 | 75 | 1 | 0 | 48 | 3 | 0 | 151 | 1 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 1 | 0 | 735 | 0 | 0 | 1 | 0 | 0 | 275 | 0 | 0 | 20 | 0 | 167 | 0 | 28 | 0 | 0 |
9 | 92 | 0 | 808 | 1 | 0 | 1 | 26 | 593 | 323 | 196 | 0 | 136 | 0 | 3 | 19 | 1 | 0 | 5 | 0 | 7 |
10 | 1252 | 2 | 4 | 0 | 0 | 15 | 3 | 18 | 4 | 205 | 0 | 82 | 3 | 1 | 5 | 3 | 4 | 4 | 0 | 20 |
12 | 25 | 1 | 0 | 0 | 1 | 737 | 32 | 0 | 8 | 2 | 0 | 52 | 5 | 0 | 40 | 1 | 1 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 873 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 6 | 0 | 1 | 128 | 2 | 30 | 0 |
14 | 0 | 17 | 0 | 0 | 0 | 0 | 3 | 0 | 2 | 1 | 0 | 0 | 116 | 20 | 0 | 1 | 1 | 0 | 0 | 0 |
22 | 10 | 0 | 9 | 0 | 0 | 0 | 1 | 18 | 6 | 19 | 0 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
23 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 18 | 1 | 2 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: antibody - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 0 | 41 | 2 | 0 | 0 | 0 | 0 | 0 | 223 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 1 | 48 | 2 | 0 | 6 | 1 | 0 | 12 | 0 | 0 | 0 | 74 |
4 | 18 | 8 | 1 | 0 | 2 | 76 | 80 | 18 | 0 | 0 | 7 | 0 | 2 | 0 |
5 | 0 | 0 | 1 | 979 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 14 |
6 | 14 | 1 | 1 | 1 | 0 | 23 | 457 | 221 | 0 | 0 | 6 | 3 | 0 | 3 |
7 | 2 | 0 | 1181 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 26 | 0 |
9 | 1524 | 275 | 1 | 0 | 2 | 1 | 26 | 47 | 171 | 3 | 134 | 22 | 5 | 0 |
10 | 52 | 1281 | 1 | 6 | 4 | 13 | 4 | 2 | 149 | 2 | 101 | 4 | 6 | 0 |
12 | 0 | 5 | 2 | 4 | 1 | 816 | 64 | 5 | 2 | 0 | 1 | 5 | 0 | 0 |
13 | 0 | 0 | 31 | 1 | 994 | 0 | 1 | 1 | 8 | 7 | 0 | 0 | 2 | 0 |
14 | 0 | 0 | 1 | 129 | 1 | 0 | 0 | 3 | 0 | 20 | 0 | 0 | 0 | 7 |
22 | 39 | 14 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 6 | 2 | 0 | 0 |
23 | 111 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 4 | 0 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: antibody - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 0 | 18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 226 | 20 | 1 | 0 | 0 | 0 |
3 | 0 | 3 | 0 | 25 | 0 | 1 | 1 | 0 | 2 | 0 | 12 | 0 | 101 | 0 | 0 | 2 |
4 | 11 | 28 | 0 | 0 | 12 | 48 | 97 | 0 | 12 | 0 | 0 | 0 | 1 | 0 | 2 | 1 |
5 | 0 | 0 | 0 | 979 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 1 | 14 | 0 | 0 | 1 |
6 | 1 | 22 | 0 | 0 | 6 | 16 | 461 | 0 | 221 | 0 | 0 | 1 | 2 | 0 | 0 | 0 |
7 | 0 | 2 | 873 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 139 | 0 | 164 | 27 | 0 |
9 | 129 | 1302 | 0 | 0 | 716 | 0 | 31 | 1 | 23 | 0 | 3 | 1 | 0 | 0 | 5 | 0 |
10 | 1543 | 8 | 1 | 2 | 46 | 3 | 6 | 0 | 2 | 0 | 0 | 3 | 3 | 0 | 4 | 4 |
12 | 6 | 0 | 1 | 0 | 3 | 816 | 69 | 0 | 4 | 0 | 0 | 1 | 4 | 0 | 0 | 1 |
13 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 549 | 1 | 327 | 7 | 30 | 0 | 1 | 2 | 126 |
14 | 0 | 1 | 0 | 14 | 1 | 0 | 0 | 0 | 2 | 0 | 20 | 1 | 121 | 0 | 0 | 1 |
22 | 12 | 19 | 0 | 0 | 34 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 4 | 0 | 0 | 126 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: antibody - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
4 | 1 | 5 | 14 | 46 | 8 | 1 | 4 | 10 | 16 | 11 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
6 | 2 | 5 | 2 | 7 | 2 | 1 | 0 | 14 | 9 | 6 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ... | 255 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 25 | 135 | 0 | 0 | 28 | 69 | 384 | 639 | 293 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
10 | 2 | 89 | 1461 | 2 | 1 | 0 | 19 | 6 | 2 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
12 | 33 | 47 | 1 | 373 | 368 | 0 | 0 | 0 | 1 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
13 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ... | 0 | 36 | 26 | 90 | 98 | 276 | 104 | 212 | 144 | 14 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
22 | 0 | 0 | 18 | 0 | 0 | 1 | 3 | 5 | 6 | 3 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 0 | 0 | 0 | 0 | 108 | 14 | 4 | 0 | 3 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 rows × 54 columns
= 'default',dataset="PBMC4") print_clustering_data(tuning
'Initial COTAN cluster number:'
34
'Initial monocle cluster number:'
1
'Initial scanpy cluster number:'
3
'Initial scvi-tools cluster number:'
22
'Initial seurat cluster number:'
16
'PBMC4 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | 3 | |
---|---|---|---|
1 | 407 | 0 | 0 |
2 | 11 | 0 | 797 |
3 | 1330 | 1 | 0 |
4 | 108 | 0 | 0 |
5 | 9 | 2178 | 13 |
6 | 308 | 0 | 0 |
7 | 77 | 0 | 0 |
8 | 538 | 0 | 0 |
9 | 358 | 1 | 0 |
10 | 0 | 307 | 0 |
11 | 1 | 1 | 222 |
12 | 0 | 28 | 0 |
13 | 8 | 3 | 2 |
14 | 106 | 0 | 0 |
15 | 0 | 92 | 1 |
16 | 0 | 59 | 0 |
'PBMC4 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 384 | 1 | 0 | ... | 0 | 6 | 0 | 0 | 0 | 1 | 5 | 0 | 0 | 0 |
2 | 0 | 673 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 |
3 | 300 | 0 | 0 | 0 | 496 | 385 | 0 | 1 | 0 | 0 | ... | 136 | 10 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 10 | 0 | ... | 0 | 7 | 0 | 0 | 0 | 0 | 85 | 0 | 0 | 0 |
5 | 1 | 0 | 596 | 456 | 0 | 0 | 427 | 0 | 0 | 281 | ... | 0 | 0 | 0 | 169 | 76 | 145 | 0 | 48 | 0 | 0 |
6 | 7 | 0 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | ... | 8 | 99 | 187 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ... | 0 | 67 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
8 | 462 | 0 | 0 | 0 | 8 | 46 | 0 | 1 | 0 | 0 | ... | 19 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 348 | 0 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 74 | 0 | 0 | 1 | 0 | 0 | 2 | ... | 0 | 0 | 0 | 10 | 2 | 1 | 0 | 1 | 0 | 0 |
11 | 0 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 5 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
13 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 42 | 0 | 0 | 0 | 1 | 13 | 0 | 1 | 0 | 0 | ... | 47 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ... | 0 | 0 | 0 | 2 | 88 | 2 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 0 |
16 rows × 22 columns
'PBMC4 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 4 | 1 | 0 | 0 | 1 | 0 | 315 | 0 | 0 | 0 | 86 | 0 | 0 | 0 |
2 | 800 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 939 | 357 | 2 | 0 | 0 | 20 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 105 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
5 | 4 | 0 | 1 | 805 | 746 | 413 | 0 | 4 | 2 | 1 | 167 | 15 | 1 | 41 | 0 | 0 |
6 | 0 | 8 | 8 | 0 | 0 | 0 | 291 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 3 | 0 | 0 | 0 | 67 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 31 | 483 | 0 | 0 | 0 | 3 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
9 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 355 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 14 | 0 | 94 | 1 | 0 | 0 | 194 | 4 | 0 | 0 | 0 | 0 | 0 |
11 | 217 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
13 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
14 | 1 | 9 | 89 | 0 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
15 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 87 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 58 | 0 |
'PBMC4 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 0 | 0 | 0 | 0 | 0 | 398 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 632 | 0 | 1 | 0 | 122 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52 | 0 |
3 | 356 | 854 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 116 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 107 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 780 | 723 | 0 | 447 | 2 | 0 | 2 | 0 | 1 | 1 | 0 | 136 | 28 | 35 | 0 | 0 | 43 |
6 | 31 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 5 | 0 | 189 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 69 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 525 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 354 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 7 | 0 | 86 | 0 | 0 | 0 | 0 | 0 | 213 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 223 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
13 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
14 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 101 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 0 | 0 |
'PBMC4 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 41 | 4 | 958 | 5 | 321 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
5 | 40 | 131 | 59 | 247 | 199 | 293 | 724 | 448 | 1 | 27 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 4 | 0 | 7 | 202 | 26 | 69 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 66 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 528 | 2 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 55 | 36 | 118 | 147 | 0 | 1 | 0 | 0 | 1 | 0 |
10 | 0 | 1 | 65 | 18 | 0 | 2 | 6 | 0 | 215 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ... | 8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 30 | 63 | 1 | 0 | 11 | 1 |
15 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 90 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 rows × 34 columns
'Initial antibody cell/cluster table:'
cluster.ids
3 2280
1 1367
10 1018
9 488
2 351
14 348
4 242
5 224
24 194
26 64
22 43
12 41
Name: count, dtype: int64
'PBMC4 - contingency_matrix (rows: antibody - cols: monocle)'
1 | 2 | 3 | |
---|---|---|---|
1 | 1341 | 4 | 0 |
2 | 334 | 3 | 0 |
3 | 8 | 2153 | 0 |
4 | 241 | 0 | 0 |
5 | 16 | 195 | 0 |
9 | 473 | 1 | 0 |
10 | 12 | 39 | 931 |
12 | 38 | 0 | 0 |
14 | 343 | 1 | 0 |
22 | 42 | 0 | 0 |
24 | 192 | 0 | 0 |
26 | 63 | 0 | 0 |
'PBMC4 - contingency_matrix (rows: antibody - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 22 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 744 | 0 | 0 | 0 | 195 | 247 | 0 | 7 | 1 | 0 | ... | 0 | 139 | 6 | 0 | 0 | 3 | 1 | 2 | 0 | 0 |
2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 317 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 0 |
3 | 1 | 0 | 573 | 514 | 1 | 0 | 405 | 0 | 0 | 273 | ... | 29 | 2 | 0 | 0 | 178 | 26 | 118 | 0 | 41 | 0 |
4 | 3 | 0 | 0 | 0 | 3 | 2 | 0 | 1 | 2 | 0 | ... | 0 | 8 | 30 | 174 | 0 | 0 | 0 | 18 | 0 | 0 |
5 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 14 | 0 | ... | 178 | 0 | 0 | 0 | 0 | 3 | 11 | 2 | 1 | 0 |
9 | 10 | 0 | 0 | 0 | 1 | 3 | 0 | 283 | 0 | 0 | ... | 0 | 2 | 130 | 8 | 0 | 1 | 0 | 36 | 0 | 0 |
10 | 1 | 657 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 1 | ... | 1 | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 3 | 37 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | ... | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 31 | 0 | 0 |
14 | 10 | 0 | 0 | 0 | 205 | 105 | 0 | 0 | 0 | 0 | ... | 0 | 23 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
22 | 6 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | ... | 0 | 0 | 24 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
24 | 9 | 0 | 0 | 0 | 97 | 75 | 0 | 0 | 1 | 0 | ... | 0 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 27 | 0 | 0 | 0 | 1 | 12 | 0 | 1 | 0 | 0 | ... | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 rows × 21 columns
'PBMC4 - contingency_matrix (rows: antibody - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 454 | 839 | 0 | 1 | 1 | 8 | 1 | 12 | 0 | 0 | 2 | 0 | 27 |
2 | 0 | 1 | 4 | 1 | 0 | 0 | 0 | 328 | 0 | 0 | 0 | 3 | 0 | 0 |
3 | 0 | 2 | 0 | 719 | 730 | 476 | 1 | 0 | 2 | 15 | 168 | 14 | 34 | 0 |
4 | 0 | 4 | 2 | 0 | 0 | 0 | 230 | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 10 | 1 | 7 | 0 | 19 | 0 | 170 | 0 | 3 | 1 | 0 |
9 | 0 | 2 | 8 | 0 | 0 | 0 | 175 | 0 | 288 | 0 | 0 | 1 | 0 | 0 |
10 | 921 | 0 | 3 | 36 | 4 | 1 | 0 | 5 | 0 | 2 | 8 | 0 | 2 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 324 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
22 | 0 | 3 | 4 | 0 | 0 | 0 | 27 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
24 | 0 | 185 | 4 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 1 | 4 | 58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC4 - contingency_matrix (rows: antibody - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 852 | 323 | 0 | 0 | 0 | 0 | 9 | 1 | 0 | 5 | 151 | 0 | 0 | 1 | 3 | 0 | 0 | 0 |
2 | 9 | 0 | 0 | 0 | 0 | 0 | 2 | 323 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
3 | 4 | 1 | 750 | 693 | 0 | 519 | 1 | 0 | 0 | 0 | 1 | 25 | 0 | 112 | 26 | 29 | 0 | 0 |
4 | 1 | 11 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 46 | 2 | 0 | 178 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 1 | 2 | 0 | 2 | 1 | 15 | 0 | 0 | 0 | 177 | 0 | 9 | 3 | 1 | 0 | 0 |
9 | 28 | 5 | 0 | 0 | 0 | 0 | 285 | 0 | 0 | 140 | 9 | 0 | 6 | 0 | 1 | 0 | 0 | 0 |
10 | 1 | 0 | 3 | 3 | 598 | 0 | 0 | 4 | 304 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 29 | 37 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 36 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 10 | 326 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
22 | 12 | 11 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 9 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
24 | 3 | 186 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
26 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC4 - contingency_matrix (rows: antibody - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | ... | 0 | 0 | 1 | 0 | 60 | 15 | 431 | 0 | 819 | 4 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | ... | 56 | 29 | 102 | 142 | 0 | 0 | 0 | 0 | 4 | 0 |
3 | 0 | 109 | 119 | 254 | 195 | 292 | 687 | 427 | 26 | 25 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 1 | 0 | 1 | 0 | 4 | 187 | 2 | 26 |
5 | 0 | 9 | 0 | 0 | 0 | 1 | 2 | 1 | 178 | 3 | ... | 0 | 4 | 10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ... | 0 | 0 | 0 | 0 | 5 | 1 | 3 | 9 | 27 | 102 |
10 | 33 | 1 | 1 | 1 | 1 | 0 | 4 | 2 | 1 | 0 | ... | 1 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 332 | 1 | 9 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 9 | 11 | 8 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 186 | 1 | 4 | 0 |
26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 6 | 51 | 1 | 0 | 5 | 0 |
12 rows × 31 columns
Against cellTypist cluster number
= 'celltypist',dataset="PBMC1") print_clustering_data(tuning
'Initial COTAN cluster number:'
18
'Initial monocle cluster number:'
18
'Initial scanpy cluster number:'
18
'Initial scvi-tools cluster number:'
17
'Initial seurat cluster number:'
20
'PBMC1 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1 | 3 | 1 | 273 | 0 | 0 | 0 | 237 | 227 | 147 | 0 | 6 | 6 | 0 | 77 | 1 | 0 |
2 | 66 | 0 | 0 | 0 | 0 | 230 | 228 | 218 | 0 | 0 | 0 | 145 | 25 | 0 | 31 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 6 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 73 | 0 |
5 | 200 | 0 | 0 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 65 | 0 | 35 | 0 | 0 | 0 |
6 | 0 | 142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 36 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 1 | 267 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
9 | 2 | 0 | 0 | 0 | 0 | 22 | 15 | 20 | 0 | 0 | 0 | 21 | 0 | 0 | 1 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 37 | 0 | 0 | 131 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 21 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 27 | 0 | 0 | 179 | 0 | 3 | 2 | 1 | 0 | 0 | 0 | 4 | 14 | 0 | 10 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
14 | 0 | 155 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 369 | 243 | 292 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 74 | 0 |
2 | 474 | 89 | 0 | 0 | 0 | 258 | 0 | 2 | 0 | 0 | 0 | 111 | 0 | 8 | 0 | 1 | 0 |
3 | 0 | 45 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 76 | 0 | 0 |
5 | 2 | 260 | 0 | 0 | 0 | 2 | 0 | 42 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 138 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 55 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 263 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 5 | 2 | 0 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 66 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 78 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 11 | 0 | 0 | 0 | 6 | 0 | 143 | 78 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 154 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 353 | 261 | 1 | 2 | 0 | 1 | 183 | 0 | 4 | 0 | 152 | 0 | 1 | 19 | 1 | 0 | 0 | 0 | 0 |
2 | 43 | 0 | 0 | 278 | 0 | 227 | 187 | 0 | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 16 | 0 | 3 |
3 | 4 | 0 | 0 | 9 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 |
4 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 0 | 0 |
5 | 279 | 0 | 0 | 11 | 4 | 9 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 55 | 0 | 0 | 0 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 152 | 1 | 0 | 0 | 125 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 2 |
10 | 0 | 0 | 86 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 81 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 65 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 45 | 0 | 0 | 1 | 173 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 17 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
'PBMC1 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 351 | 267 | 0 | 229 | 0 | 0 | 0 | 0 | ... | 0 | 3 | 0 | 1 | 88 | 0 | 0 | 40 | 0 | 0 |
2 | 423 | 119 | 0 | 0 | 238 | 0 | 154 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 1 | 0 |
3 | 1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 0 |
4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 74 | 0 | 0 | 0 | 0 |
5 | 0 | 258 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | ... | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 151 | 0 | 0 | ... | 0 | 0 | 5 | 123 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 10 | 2 | 0 | 0 | 11 | 0 | 11 | 0 | 1 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 46 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 130 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | ... | 0 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 3 | 0 | 0 | 4 | 0 | 0 | 0 | 138 | 0 | ... | 0 | 0 | 44 | 0 | 0 | 0 | 2 | 0 | 1 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 27 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 153 | ... | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 rows × 21 columns
'PBMC1 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 35 | 0 | 0 | 272 | 464 | 207 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 800 | 31 | 24 | 85 | 3 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 22 | 10 | 7 | 0 | 0 | 0 | 6 |
4 | 0 | 73 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 9 | 293 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 0 | 25 | 1 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 5 | 4 | 115 | 104 | 47 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 77 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
10 | 0 | 1 | 122 | 0 | 5 | 42 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 67 | 0 | 2 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 5 | 51 | 0 | 175 | 0 | 0 | 1 |
13 | 0 | 1 | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 152 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
= 'celltypist',dataset="PBMC2") print_clustering_data(tuning
'Initial COTAN cluster number:'
17
'Initial monocle cluster number:'
17
'Initial scanpy cluster number:'
18
'Initial scvi-tools cluster number:'
20
'Initial seurat cluster number:'
19
'PBMC2 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | 0 | 5 | 0 | 55 | 0 | 0 | 12 | 38 | 6 | 90 | 1 | 0 | 0 | 22 |
2 | 0 | 0 | 0 | 0 | 0 | 279 | 0 | 6 | 22 | 0 | 53 | 22 | 24 | 1 | 19 | 0 | 0 | 1 |
3 | 0 | 1 | 332 | 1 | 407 | 130 | 338 | 27 | 297 | 36 | 202 | 95 | 99 | 38 | 132 | 0 | 0 | 7 |
4 | 577 | 1 | 0 | 6 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 42 | 0 | 0 | 0 | 75 |
5 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 258 | 0 | 0 | 9 | 9 | 2 | 13 | 0 | 0 | 0 | 9 |
6 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 77 | 0 |
7 | 0 | 558 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 142 | 0 | 32 | 4 | 69 | 4 | 11 | 292 | 24 | 59 | 4 | 2 | 31 | 0 | 0 | 0 |
9 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 173 | 0 | 0 |
10 | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 3 |
11 | 0 | 0 | 0 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 3 | 0 | 0 | 0 | 66 | 3 | 3 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 15 | 2 | 57 | 5 | 0 | 148 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 131 | 200 | 35 | 2 | 2 | 0 | 1 | 55 | 0 | 1 | 0 | 0 | 0 | 0 |
3 | 21 | 575 | 490 | 0 | 0 | 0 | 230 | 107 | 248 | 286 | 10 | 2 | 48 | 98 | 0 | 26 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 471 | 8 | 0 | 1 | 0 | 0 | 2 | 222 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 253 | 0 | 3 | 52 | 0 | 6 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 88 | 0 | 0 |
7 | 0 | 0 | 0 | 464 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 88 | 0 | 0 | 0 |
8 | 558 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 112 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 174 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 44 | 17 | 1 | 1 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1 | 0 | 217 | 0 | 0 | 0 | 7 | 0 | 3 | 0 | 3 | 0 | 0 | 0 |
2 | 348 | 2 | 0 | 0 | 0 | 4 | 7 | 0 | 2 | 3 | 60 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 469 | 4 | 1 | 15 | 1 | 412 | 69 | 356 | 324 | 322 | 165 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 667 | 1 | 0 | 8 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 23 | 0 | 0 |
5 | 10 | 2 | 0 | 0 | 0 | 0 | 7 | 0 | 1 | 0 | 65 | 0 | 159 | 0 | 72 | 0 | 0 | 0 |
6 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 4 | 0 |
7 | 0 | 0 | 556 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 1 | 0 | 1 | 561 | 0 | 2 | 99 | 1 | 2 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 173 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
15 | 61 | 0 | 0 | 0 | 0 | 3 | 2 | 1 | 1 | 3 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 1 | 0 | 1 | 41 | 178 | 0 | 0 | 1 | 0 | 0 | 0 |
2 | 389 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10 | 3 | 0 | 23 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 259 | 0 | 578 | 568 | 15 | 0 | 1 | 290 | 188 | 0 | 2 | 169 | 62 | 8 | 0 | 0 | 2 | 0 | 0 | 0 |
4 | 0 | 635 | 0 | 0 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 59 | 0 | 0 | 0 |
5 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 268 | 0 | 32 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 305 | 0 | 0 | 0 | 0 | 253 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 1 | 0 | 8 | 0 | 541 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 119 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 172 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 145 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 201 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 76 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 |
'PBMC2 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 3 | 4 | 220 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 416 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 2 | 1186 | 847 | 31 | 72 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 639 | 56 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 1 |
5 | 0 | 0 | 0 | 39 | 0 | 7 | 270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 86 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 81 | 300 | 174 | 0 | 0 | 2 | 0 |
8 | 0 | 0 | 568 | 9 | 1 | 96 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 154 | 24 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
10 | 1 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 145 | 69 | 14 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 22 | 180 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 1 |
15 | 0 | 1 | 0 | 6 | 72 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
= 'celltypist',dataset="PBMC3") print_clustering_data(tuning
'Initial COTAN cluster number:'
23
'Initial monocle cluster number:'
23
'Initial scanpy cluster number:'
17
'Initial scvi-tools cluster number:'
18
'Initial seurat cluster number:'
20
'PBMC3 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 860 | 0 | 0 | 0 | 38 | 559 | 313 | 338 | 231 | 324 | 158 | 0 | 195 | 0 | 0 | 5 | 0 |
2 | 0 | 1041 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 390 | 0 | 2 | 7 | 0 | 31 |
3 | 0 | 0 | 0 | 654 | 0 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
4 | 400 | 0 | 0 | 0 | 12 | 309 | 29 | 47 | 12 | 157 | 78 | 0 | 56 | 0 | 0 | 0 | 0 |
5 | 0 | 22 | 1036 | 33 | 22 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 1 | 0 | 2 | 121 | 0 |
6 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 144 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 134 | 1 | 247 | 305 | 248 | 0 | 135 | 1 | 42 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 3 | 0 | 435 | 0 | 3 | 7 | 0 | 0 | 12 | 0 | 20 | 0 | 0 | 4 | 0 |
9 | 0 | 0 | 0 | 396 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 328 | 2 | 0 | 1 |
11 | 0 | 0 | 8 | 0 | 277 | 2 | 21 | 26 | 1 | 0 | 47 | 0 | 46 | 0 | 0 | 2 | 0 |
13 | 11 | 0 | 0 | 0 | 0 | 8 | 157 | 9 | 19 | 1 | 7 | 0 | 21 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 79 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 19 | 0 |
15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1670 | 0 | 0 | 212 | 0 | 32 | 234 | 621 | 23 | 228 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 202 | 0 | 0 | 5 | 0 | 35 | 0 |
3 | 0 | 0 | 0 | 0 | 543 | 0 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 111 | 0 | 0 | 2 | 0 |
4 | 29 | 0 | 0 | 0 | 0 | 811 | 192 | 5 | 4 | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 1028 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 29 | 145 | 33 | 0 | 0 | 0 | 0 |
6 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 149 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 702 | 0 | 0 | 230 | 99 | 7 | 73 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 3 | 0 | 0 | 0 | 47 | 0 | 433 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 395 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
10 | 0 | 94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 311 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
11 | 0 | 0 | 2 | 0 | 0 | 0 | 116 | 0 | 290 | 21 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
13 | 16 | 0 | 0 | 44 | 0 | 0 | 10 | 55 | 1 | 107 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 11 | 0 | 0 | 0 | 4 | 0 | 5 | 1 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 657 | 1415 | 2 | 2 | 43 | 614 | 91 | 5 | 0 | 64 | 0 | 14 | 49 | 0 | 0 | 32 | 31 | 0 |
2 | 1463 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 4 | 0 | 1 | 0 | 654 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 6 | 13 | 1 | 0 | 856 | 4 | 168 | 0 | 0 | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 0 | 0 |
5 | 29 | 0 | 0 | 1172 | 32 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 1 |
6 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 827 | 5 | 0 | 0 | 1 | 187 | 35 | 22 | 0 | 0 | 0 | 24 | 8 | 0 | 0 | 1 | 2 | 0 |
8 | 0 | 30 | 0 | 2 | 0 | 1 | 3 | 12 | 305 | 0 | 131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 396 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 324 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 15 | 0 | 2 | 1 | 3 | 1 | 399 | 3 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
13 | 0 | 49 | 21 | 0 | 0 | 0 | 22 | 6 | 0 | 0 | 0 | 0 | 131 | 2 | 0 | 0 | 2 | 0 | 0 |
14 | 0 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 52 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
'PBMC3 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1744 | 412 | 0 | 0 | 681 | 20 | 161 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 227 | 0 | 231 | 3 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 535 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 120 | 0 | 0 |
4 | 16 | 6 | 0 | 0 | 3 | 886 | 188 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
5 | 0 | 1 | 4 | 1043 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 24 | 136 | 0 | 0 | 30 | 0 | 0 |
6 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 149 | 0 | 0 | 0 |
7 | 0 | 995 | 0 | 0 | 93 | 0 | 18 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 18 | 0 | 3 | 0 | 0 | 8 | 0 | 454 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 0 | 336 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
10 | 0 | 0 | 89 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 314 | 1 | 0 | 4 | 0 | 0 | 0 | 0 |
11 | 0 | 14 | 0 | 0 | 0 | 2 | 411 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 13 | 8 | 0 | 0 | 205 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 52 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
'PBMC3 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1822 | 80 | 633 | 127 | 291 | 53 | 12 | 0 | 0 | 3 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | ... | 68 | 517 | 404 | 324 | 0 | 0 | 0 | 1 | 0 | 0 |
3 | 1 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 9 | 136 | 387 | 108 | 15 | 0 |
4 | 482 | 430 | 156 | 9 | 5 | 17 | 1 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 1 | 0 | 138 | 2 | 28 | 281 | 755 | ... | 0 | 1 | 0 | 0 | 0 | 25 | 5 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 5 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 87 | 955 | 53 | 11 | 7 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 1 | 16 | 1 | 8 | 454 | 0 | 3 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 359 | 2 | 34 | 0 | 1 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 82 | 31 | 91 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 5 | 1 | 86 | 4 | 11 | 29 | 255 | 0 | 24 | 15 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 7 | 0 | 210 | 5 | 1 | 10 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 1 | 0 | 10 | 0 | 0 | 100 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52 |
19 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 8 | 0 |
17 rows × 23 columns
= 'celltypist',dataset="PBMC4") print_clustering_data(tuning
'Initial COTAN cluster number:'
15
'Initial monocle cluster number:'
21
'Initial scanpy cluster number:'
16
'Initial scvi-tools cluster number:'
18
'Initial seurat cluster number:'
18
'PBMC4 - contingency_matrix (rows: cellTypist - cols: monocle)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 12 | 0 | 381 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 755 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 41 |
3 | 0 | 705 | 149 | 0 | 0 | 0 | 379 | 0 | 3 | 0 | 92 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 97 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | 5 | 2 | 2 | 647 | 637 | 405 | 0 | 1 | 419 | 3 | 2 | 3 | 34 | 0 | 29 | 0 |
6 | 0 | 196 | 83 | 0 | 0 | 0 | 19 | 1 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 51 | 0 | 0 | 0 | 0 | 9 | 0 | 15 | 2 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 2 | 417 | 0 | 0 | 0 | 77 | 0 | 0 | 5 | 37 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 351 | 1 | 3 | 4 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 2 | 3 | 76 | 0 | 0 | 5 | 0 | 0 | 219 | 2 | 0 | 0 | 0 |
11 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
13 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 |
14 | 0 | 4 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 97 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 11 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 72 | 3 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 0 | 0 |
'PBMC4 - contingency_matrix (rows: cellTypist - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 10 | 0 | 0 | 0 | 0 | 381 | 5 | 1 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 672 | 0 | 0 | 0 | 0 | 1 | 134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 346 | 0 | 0 | 508 | 386 | 1 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 77 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 7 | 10 | 0 | 0 | 0 | 0 | 0 | 84 | 0 | 0 | 0 |
5 | 924 | 1 | 818 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 181 | 77 | 140 | 0 | 0 | 47 | 0 |
6 | 0 | 7 | 0 | 0 | 5 | 2 | 0 | 286 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
7 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
8 | 0 | 483 | 0 | 0 | 8 | 43 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
9 | 0 | 1 | 0 | 0 | 0 | 0 | 5 | 0 | 348 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
10 | 74 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 216 | 10 | 2 | 2 | 0 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 46 | 0 | 0 | 0 | 0 | 0 | 177 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
13 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 68 | 0 | 0 | 1 | 22 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 89 | 2 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 |
'PBMC4 - contingency_matrix (rows: cellTypist - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 311 | 0 | 0 | 1 | 0 | 0 | 86 | 2 | 0 | 0 |
2 | 1 | 1 | 0 | 0 | 686 | 0 | 1 | 1 | 10 | 0 | 104 | 2 | 0 | 0 | 0 | 1 | 0 | 0 |
3 | 438 | 838 | 1 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 1 | 0 | 0 | 0 | 99 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 772 | 696 | 2 | 506 | 15 | 0 | 0 | 65 | 2 | 1 | 0 | 23 | 2 | 83 | 0 | 20 |
6 | 10 | 8 | 0 | 0 | 0 | 0 | 0 | 287 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 5 | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 507 | 15 | 0 | 0 | 0 | 0 | 1 | 3 | 2 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 358 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 13 | 1 | 0 | 27 | 0 | 0 | 0 | 265 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 219 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
13 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 16 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 81 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 89 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 57 | 0 |
'PBMC4 - contingency_matrix (rows: cellTypist - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 0 | 0 | 0 | 0 | 0 | 394 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 631 | 0 | 1 | 0 | 122 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52 | 0 |
3 | 361 | 841 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 121 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 106 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 770 | 728 | 0 | 445 | 2 | 0 | 2 | 0 | 1 | 1 | 0 | 133 | 27 | 35 | 0 | 0 | 43 |
6 | 31 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 5 | 0 | 189 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 69 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 525 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 354 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 7 | 0 | 86 | 0 | 0 | 0 | 0 | 0 | 213 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 223 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
13 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
14 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 101 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 0 | 0 |
'PBMC4 - contingency_matrix (rows: cellTypist - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 398 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 47 | 344 | 413 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 366 | 961 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 104 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 129 | 719 | 530 | 739 | 66 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 99 | 209 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 70 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 530 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 356 | 1 | 0 | 0 | 0 | 0 | 0 |
10 | 1 | 6 | 83 | 2 | 0 | 215 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 199 | 1 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
13 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 8 | 0 | 1 | 1 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 105 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 1 | 1 | 0 | 91 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 0 |
Against antibody cluster number
= 'antibody',dataset="PBMC1") print_clustering_data(tuning
'Initial COTAN cluster number:'
13
'Initial monocle cluster number:'
1
'Initial scanpy cluster number:'
9
'Initial scvi-tools cluster number:'
11
'Initial seurat cluster number:'
10
'Initial antibody cell/cluster table:'
cluster.ids
7 1338
8 876
3 748
4 341
9 331
5 211
1 202
6 131
2 62
10 51
12 16
Name: count, dtype: int64
'PBMC1 - contingency_matrix (rows: antibody - cols: monocle)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 94 | 0 | 17 | 50 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 4 | 0 | 0 | 3 | 0 | 38 | 1 | 0 |
3 | 35 | 0 | 500 | 65 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 262 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 29 | 127 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 58 | 26 |
7 | 2 | 731 | 0 | 4 | 0 | 275 | 95 | 17 | 1 |
8 | 776 | 0 | 30 | 6 | 1 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 1 | 294 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 44 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 0 | 7 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
2 | 0 | 0 | 0 | 0 | 5 | 0 | 2 | 1 | 0 | 38 | 0 |
3 | 67 | 0 | 408 | 125 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 13 | 0 | 249 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 10 | 146 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |
7 | 2 | 702 | 1 | 0 | 348 | 0 | 0 | 0 | 20 | 52 | 0 |
8 | 780 | 0 | 21 | 6 | 0 | 1 | 1 | 0 | 1 | 0 | 4 |
9 | 0 | 0 | 0 | 1 | 0 | 1 | 156 | 137 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 37 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 28 | 0 | 0 | 22 | 0 | 1 | 36 | 0 | 74 | 0 |
2 | 0 | 3 | 42 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 123 | 0 | 0 | 434 | 0 | 0 | 43 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 0 | 0 | 259 | 3 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 17 | 0 | 0 | 138 | 0 | 3 | 0 |
6 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 56 | 3 | 26 |
7 | 1 | 644 | 451 | 0 | 0 | 1 | 0 | 27 | 0 | 1 |
8 | 786 | 0 | 0 | 19 | 1 | 2 | 3 | 0 | 2 | 1 |
9 | 0 | 0 | 0 | 0 | 294 | 1 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 1 | 0 | 9 | 34 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 93 | 14 | 0 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 1 | 39 | 0 | 0 |
3 | 22 | 536 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 261 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 18 | 0 | 0 | 0 | 139 | 0 | 0 | 0 | 0 | 0 |
6 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 56 | 25 |
7 | 2 | 1 | 524 | 488 | 2 | 0 | 0 | 0 | 89 | 18 | 1 |
8 | 766 | 40 | 0 | 0 | 1 | 5 | 1 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 2 | 0 | 151 | 142 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 8 | 36 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 8 | 2 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 1 | 2 | 94 | 10 |
2 | 1 | 1 | 38 | 0 | 4 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 6 | 55 | 58 | 442 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 257 | 4 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 135 | 0 | 1 | 2 | 20 |
6 | 0 | 56 | 1 | 1 | 1 | 25 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
7 | 33 | 17 | 83 | 271 | 716 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 4 | 0 | 12 | 773 | 23 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 143 | 0 | 2 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 5 | 1 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 2 | 0 | 1 |
= 'antibody',dataset="PBMC1") print_clustering_data(tuning
'Initial COTAN cluster number:'
13
'Initial monocle cluster number:'
1
'Initial scanpy cluster number:'
9
'Initial scvi-tools cluster number:'
11
'Initial seurat cluster number:'
10
'Initial antibody cell/cluster table:'
cluster.ids
7 1338
8 876
3 748
4 341
9 331
5 211
1 202
6 131
2 62
10 51
12 16
Name: count, dtype: int64
'PBMC1 - contingency_matrix (rows: antibody - cols: monocle)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 94 | 0 | 17 | 50 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 4 | 0 | 0 | 3 | 0 | 38 | 1 | 0 |
3 | 35 | 0 | 500 | 65 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 262 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 29 | 127 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 58 | 26 |
7 | 2 | 731 | 0 | 4 | 0 | 275 | 95 | 17 | 1 |
8 | 776 | 0 | 30 | 6 | 1 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 1 | 294 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 44 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 0 | 7 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
2 | 0 | 0 | 0 | 0 | 5 | 0 | 2 | 1 | 0 | 38 | 0 |
3 | 67 | 0 | 408 | 125 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 13 | 0 | 249 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 10 | 146 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |
7 | 2 | 702 | 1 | 0 | 348 | 0 | 0 | 0 | 20 | 52 | 0 |
8 | 780 | 0 | 21 | 6 | 0 | 1 | 1 | 0 | 1 | 0 | 4 |
9 | 0 | 0 | 0 | 1 | 0 | 1 | 156 | 137 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 37 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 28 | 0 | 0 | 22 | 0 | 1 | 36 | 0 | 74 | 0 |
2 | 0 | 3 | 42 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 123 | 0 | 0 | 434 | 0 | 0 | 43 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 0 | 0 | 259 | 3 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 17 | 0 | 0 | 138 | 0 | 3 | 0 |
6 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 56 | 3 | 26 |
7 | 1 | 644 | 451 | 0 | 0 | 1 | 0 | 27 | 0 | 1 |
8 | 786 | 0 | 0 | 19 | 1 | 2 | 3 | 0 | 2 | 1 |
9 | 0 | 0 | 0 | 0 | 294 | 1 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 1 | 0 | 9 | 34 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 93 | 14 | 0 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 1 | 39 | 0 | 0 |
3 | 22 | 536 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 261 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 18 | 0 | 0 | 0 | 139 | 0 | 0 | 0 | 0 | 0 |
6 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 56 | 25 |
7 | 2 | 1 | 524 | 488 | 2 | 0 | 0 | 0 | 89 | 18 | 1 |
8 | 766 | 40 | 0 | 0 | 1 | 5 | 1 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 2 | 0 | 151 | 142 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 8 | 36 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 8 | 2 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 1 | 2 | 94 | 10 |
2 | 1 | 1 | 38 | 0 | 4 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 6 | 55 | 58 | 442 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 257 | 4 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 135 | 0 | 1 | 2 | 20 |
6 | 0 | 56 | 1 | 1 | 1 | 25 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
7 | 33 | 17 | 83 | 271 | 716 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 4 | 0 | 12 | 773 | 23 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 143 | 0 | 2 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 5 | 1 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 2 | 0 | 1 |
= 'antibody',dataset="PBMC1") print_clustering_data(tuning
'Initial COTAN cluster number:'
13
'Initial monocle cluster number:'
1
'Initial scanpy cluster number:'
9
'Initial scvi-tools cluster number:'
11
'Initial seurat cluster number:'
10
'Initial antibody cell/cluster table:'
cluster.ids
7 1338
8 876
3 748
4 341
9 331
5 211
1 202
6 131
2 62
10 51
12 16
Name: count, dtype: int64
'PBMC1 - contingency_matrix (rows: antibody - cols: monocle)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 94 | 0 | 17 | 50 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 4 | 0 | 0 | 3 | 0 | 38 | 1 | 0 |
3 | 35 | 0 | 500 | 65 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 262 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 29 | 127 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 58 | 26 |
7 | 2 | 731 | 0 | 4 | 0 | 275 | 95 | 17 | 1 |
8 | 776 | 0 | 30 | 6 | 1 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 1 | 294 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 44 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scanpy)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 0 | 7 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
2 | 0 | 0 | 0 | 0 | 5 | 0 | 2 | 1 | 0 | 38 | 0 |
3 | 67 | 0 | 408 | 125 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 13 | 0 | 249 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 10 | 146 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |
7 | 2 | 702 | 1 | 0 | 348 | 0 | 0 | 0 | 20 | 52 | 0 |
8 | 780 | 0 | 21 | 6 | 0 | 1 | 1 | 0 | 1 | 0 | 4 |
9 | 0 | 0 | 0 | 1 | 0 | 1 | 156 | 137 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 37 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: scvi-tools)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 28 | 0 | 0 | 22 | 0 | 1 | 36 | 0 | 74 | 0 |
2 | 0 | 3 | 42 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 123 | 0 | 0 | 434 | 0 | 0 | 43 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 0 | 0 | 259 | 3 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 17 | 0 | 0 | 138 | 0 | 3 | 0 |
6 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 56 | 3 | 26 |
7 | 1 | 644 | 451 | 0 | 0 | 1 | 0 | 27 | 0 | 1 |
8 | 786 | 0 | 0 | 19 | 1 | 2 | 3 | 0 | 2 | 1 |
9 | 0 | 0 | 0 | 0 | 294 | 1 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 1 | 0 | 9 | 34 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: seurat)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 93 | 14 | 0 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 1 | 39 | 0 | 0 |
3 | 22 | 536 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 261 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 18 | 0 | 0 | 0 | 139 | 0 | 0 | 0 | 0 | 0 |
6 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 56 | 25 |
7 | 2 | 1 | 524 | 488 | 2 | 0 | 0 | 0 | 89 | 18 | 1 |
8 | 766 | 40 | 0 | 0 | 1 | 5 | 1 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 2 | 0 | 151 | 142 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 8 | 36 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 8 | 2 | 0 | 0 | 0 | 0 | 0 |
'PBMC1 - contingency_matrix (rows: antibody - cols: COTAN)'
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 1 | 2 | 94 | 10 |
2 | 1 | 1 | 38 | 0 | 4 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 6 | 55 | 58 | 442 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 257 | 4 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 135 | 0 | 1 | 2 | 20 |
6 | 0 | 56 | 1 | 1 | 1 | 25 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
7 | 33 | 17 | 83 | 271 | 716 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 4 | 0 | 12 | 773 | 23 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 143 | 0 | 2 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 5 | 1 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 2 | 0 | 1 |
Default parameters
= 'default',dataset="PBMC1") print_scores(tuning
'PBMC1 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3 | 18 | 13 | 11 | 23 |
'PBMC1 - Silhuette (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.106025 | 0.062012 | 0.087622 | 0.168956 | 0.1122 |
'PBMC1 - Calinski_Harabasz (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 194.710746 | 159.568549 | 193.151278 | 235.185139 | 166.209735 |
'PBMC1 - davies_bouldin (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3.046493 | 2.534291 | 2.547137 | 1.695538 | 2.199121 |
'PBMC1 - Silhuette from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.182454 | -0.006178 | 0.148873 | 0.235918 | 0.139282 |
'PBMC1 - Calinski_Harabasz from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 187.272904 | 160.02968 | 199.227613 | 213.845901 | 133.985915 |
'PBMC1 - davies_bouldin from Prob. (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 2.582264 | 2.79635 | 2.842419 | 1.973727 | 3.407326 |
'PBMC1 - default labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.580616 | 0.385715 | 0.412315 | 0.981082 | 0.603445 | 0.367190 | 0.991712 |
scanpy | 0.722333 | 0.405339 | 0.828504 | 0.640283 | 0.509402 | 0.791080 | 0.328020 |
scvi-tools | 0.777869 | 0.600555 | 0.813260 | 0.745430 | 0.667316 | 0.813991 | 0.547070 |
seurat | 0.795611 | 0.651612 | 0.787916 | 0.803458 | 0.707763 | 0.751355 | 0.666699 |
COTAN | 0.747622 | 0.582668 | 0.839063 | 0.674153 | 0.655776 | 0.845150 | 0.508836 |
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.622344 | 0.439255 | 0.458549 | 0.968180 | 0.645589 | 0.421345 | 0.989178 |
scanpy | 0.662480 | 0.389320 | 0.814398 | 0.558329 | 0.511739 | 0.851844 | 0.307424 |
scvi-tools | 0.718265 | 0.557951 | 0.800919 | 0.651075 | 0.643426 | 0.842101 | 0.491625 |
seurat | 0.747924 | 0.647338 | 0.787235 | 0.712353 | 0.712527 | 0.810669 | 0.626267 |
COTAN | 0.684979 | 0.529470 | 0.823524 | 0.586337 | 0.623261 | 0.862630 | 0.450315 |
= 'default',dataset="PBMC2") print_scores(tuning
'PBMC2 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 2 | 18 | 20 | 14 | 31 |
'PBMC2 - Silhuette (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.237524 | 0.077322 | 0.018324 | 0.134064 | 0.112282 |
'PBMC2 - Calinski_Harabasz (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 298.25227 | 270.502074 | 223.039427 | 367.295749 | 222.980901 |
'PBMC2 - davies_bouldin (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3.89379 | 2.581588 | 3.703433 | 1.958013 | 2.8615 |
'PBMC2 - Silhuette from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.283181 | 0.1987 | 0.064022 | 0.358299 | 0.19162 |
'PBMC2 - Calinski_Harabasz from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 284.036162 | 259.900464 | 223.875031 | 377.870193 | 213.170805 |
'PBMC2 - davies_bouldin from Prob. (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3.514194 | 2.322847 | 5.400931 | 1.992412 | 4.535166 |
'PBMC2 - default labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.393439 | 0.206935 | 0.246216 | 0.978567 | 0.521545 | 0.273004 | 0.996358 |
scanpy | 0.719426 | 0.457389 | 0.805848 | 0.649745 | 0.557061 | 0.815952 | 0.380312 |
scvi-tools | 0.699891 | 0.424655 | 0.787025 | 0.630128 | 0.525155 | 0.763216 | 0.361349 |
seurat | 0.776310 | 0.562412 | 0.820809 | 0.736387 | 0.640230 | 0.816710 | 0.501886 |
COTAN | 0.724561 | 0.492226 | 0.862550 | 0.624634 | 0.593654 | 0.891369 | 0.395375 |
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.266290 | 0.092131 | 0.156254 | 0.900271 | 0.459354 | 0.212893 | 0.991137 |
scanpy | 0.693344 | 0.526719 | 0.779700 | 0.624210 | 0.610277 | 0.815918 | 0.456465 |
scvi-tools | 0.661538 | 0.488989 | 0.757752 | 0.587004 | 0.576896 | 0.781492 | 0.425864 |
seurat | 0.757858 | 0.683647 | 0.801432 | 0.718778 | 0.738063 | 0.851801 | 0.639512 |
COTAN | 0.693767 | 0.569696 | 0.814741 | 0.604074 | 0.647577 | 0.850076 | 0.493316 |
= 'default',dataset="PBMC3") print_scores(tuning
'PBMC3 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3 | 22 | 17 | 18 | 57 |
'PBMC3 - Silhuette (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.173831 | 0.017764 | 0.066172 | 0.12701 | 0.043145 |
'PBMC3 - Calinski_Harabasz (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 565.456442 | 389.223708 | 568.006153 | 568.200931 | 269.332151 |
'PBMC3 - davies_bouldin (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3.238128 | 3.245809 | 2.168128 | 2.441035 | 2.894026 |
'PBMC3 - Silhuette from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.214085 | 0.065185 | 0.226855 | 0.282982 | -0.001861 |
'PBMC3 - Calinski_Harabasz from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 531.480656 | 382.798915 | 537.03678 | 586.377699 | 255.33551 |
'PBMC3 - davies_bouldin from Prob. (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 2.634444 | 3.87979 | 2.321242 | 2.318734 | 4.285919 |
'PBMC3 - default labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.501257 | 0.233289 | 0.339140 | 0.960303 | 0.500276 | 0.252654 | 0.990586 |
scanpy | 0.685942 | 0.462727 | 0.765047 | 0.621663 | 0.541439 | 0.751303 | 0.390196 |
scvi-tools | 0.738810 | 0.579719 | 0.758792 | 0.719853 | 0.635430 | 0.710503 | 0.568289 |
seurat | 0.771188 | 0.585275 | 0.823308 | 0.725274 | 0.644396 | 0.790547 | 0.525264 |
COTAN | 0.684907 | 0.420422 | 0.880300 | 0.560498 | 0.531259 | 0.917456 | 0.307629 |
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.473374 | 0.197340 | 0.318745 | 0.919383 | 0.474384 | 0.228968 | 0.982845 |
scanpy | 0.678005 | 0.546455 | 0.758365 | 0.613045 | 0.613385 | 0.808137 | 0.465567 |
scvi-tools | 0.725083 | 0.668897 | 0.739961 | 0.710792 | 0.711791 | 0.755603 | 0.670519 |
seurat | 0.752260 | 0.669108 | 0.800562 | 0.709455 | 0.714356 | 0.824890 | 0.618633 |
COTAN | 0.642410 | 0.427885 | 0.825485 | 0.525799 | 0.523267 | 0.834295 | 0.328191 |
= 'default',dataset="PBMC4") print_scores(tuning
'PBMC4 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3 | 22 | 16 | 19 | 34 |
'PBMC4 - Silhuette (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.081399 | 0.063742 | 0.075337 | 0.12954 | 0.120257 |
'PBMC4 - Calinski_Harabasz (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 364.985136 | 267.681245 | 341.396665 | 364.393784 | 285.369852 |
'PBMC4 - davies_bouldin (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 3.354088 | 2.496024 | 2.226 | 2.224448 | 2.372892 |
'PBMC4 - Silhuette from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 0.193766 | 0.025023 | 0.077663 | 0.187532 | 0.062563 |
'PBMC4 - Calinski_Harabasz from Prob. (higher is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 353.871309 | 254.540593 | 284.048471 | 347.979408 | 270.2767 |
'PBMC4 - davies_bouldin from Prob. (lower is better)'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 2.775993 | 3.467425 | 2.808762 | 2.299231 | 3.452692 |
'PBMC4 - default labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.617025 | 0.470070 | 0.453383 | 0.965513 | 0.647279 | 0.425154 | 0.985455 |
scanpy | 0.701228 | 0.380357 | 0.819943 | 0.612541 | 0.487560 | 0.777350 | 0.305802 |
scvi-tools | 0.739299 | 0.504966 | 0.788229 | 0.696088 | 0.584900 | 0.745208 | 0.459077 |
seurat | 0.760207 | 0.494746 | 0.847372 | 0.689301 | 0.583823 | 0.820228 | 0.415555 |
COTAN | 0.726404 | 0.422436 | 0.881515 | 0.617712 | 0.528853 | 0.837081 | 0.334120 |
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.639609 | 0.527106 | 0.485153 | 0.938343 | 0.690625 | 0.486090 | 0.981225 |
scanpy | 0.645222 | 0.369607 | 0.792297 | 0.544201 | 0.492852 | 0.824066 | 0.294762 |
scvi-tools | 0.701912 | 0.483655 | 0.772259 | 0.643310 | 0.578775 | 0.767482 | 0.436467 |
seurat | 0.693570 | 0.445739 | 0.804501 | 0.609523 | 0.551688 | 0.803926 | 0.378591 |
COTAN | 0.644162 | 0.338121 | 0.813229 | 0.533293 | 0.457870 | 0.743146 | 0.282105 |
Matching cellTypist clusters number
= 'celltypist',dataset="PBMC1") print_scores(tuning
'PBMC1 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 18 | 17 | 20 | 21 | 18 |
'PBMC1 - Silhuette (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.018958 | 0.099632 | 0.064412 | 0.073234 | 0.097248 | 0.119959 |
'PBMC1 - Calinski_Harabasz (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 130.295857 | 189.243925 | 161.219024 | 164.798269 | 187.055701 | 181.752646 |
'PBMC1 - davies_bouldin (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 2.822402 | 1.766278 | 2.822667 | 2.83544 | 2.107907 | 2.206314 |
'PBMC1 - Silhuette from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | -0.045945 | 0.425583 | 0.035198 | -0.003457 | 0.038689 | 0.17801 |
'PBMC1 - Calinski_Harabasz from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 105.849177 | 258.209764 | 166.895151 | 148.432443 | 163.330165 | 155.720126 |
'PBMC1 - davies_bouldin from Prob. (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 5.911548 | 1.299157 | 4.052006 | 4.249784 | 3.73374 | 2.738509 |
'PBMC1 - matching celltypist labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.658735 | 0.341968 | 0.759474 | 0.581592 | 0.448922 | 0.715120 | 0.281815 |
scanpy | 0.736780 | 0.460617 | 0.825488 | 0.665288 | 0.554390 | 0.798681 | 0.384820 |
scvi-tools | 0.700899 | 0.375385 | 0.811930 | 0.616582 | 0.480324 | 0.750160 | 0.307549 |
seurat | 0.730959 | 0.423158 | 0.851564 | 0.640279 | 0.527781 | 0.824168 | 0.337980 |
COTAN | 0.760567 | 0.614586 | 0.823060 | 0.706893 | 0.680190 | 0.835363 | 0.553840 |
= 'celltypist',dataset="PBMC2") print_scores(tuning
'PBMC2 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 18 | 20 | 18 | 20 | 17 |
'PBMC2 - Silhuette (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | -0.027381 | 0.142246 | 0.03787 | 0.039284 | 0.074705 | 0.129948 |
'PBMC2 - Calinski_Harabasz (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 172.476071 | 369.182347 | 250.226682 | 275.332265 | 313.66872 | 297.21664 |
'PBMC2 - davies_bouldin (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.456318 | 1.519571 | 2.755944 | 3.916041 | 2.073804 | 2.590932 |
'PBMC2 - Silhuette from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.016222 | 0.428361 | 0.111552 | 0.14981 | 0.180354 | 0.269737 |
'PBMC2 - Calinski_Harabasz from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 166.040634 | 405.143887 | 239.361751 | 274.501619 | 315.911839 | 295.576497 |
'PBMC2 - davies_bouldin from Prob. (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.973793 | 1.205375 | 3.43661 | 3.947089 | 2.428992 | 2.216364 |
'PBMC2 - matching celltypist labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.605793 | 0.310821 | 0.700581 | 0.533598 | 0.424516 | 0.695894 | 0.258968 |
scanpy | 0.699382 | 0.378427 | 0.812919 | 0.613673 | 0.493978 | 0.814699 | 0.299515 |
scvi-tools | 0.709756 | 0.399001 | 0.791766 | 0.643141 | 0.501208 | 0.730913 | 0.343692 |
seurat | 0.737794 | 0.418471 | 0.850711 | 0.651340 | 0.528956 | 0.837754 | 0.333981 |
COTAN | 0.731121 | 0.473101 | 0.747806 | 0.715164 | 0.563052 | 0.591871 | 0.535636 |
= 'celltypist',dataset="PBMC3") print_scores(tuning
'PBMC3 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 17 | 18 | 19 | 18 | 23 |
'PBMC3 - Silhuette (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | -0.023054 | 0.150798 | 0.055521 | 0.018785 | 0.131058 | 0.057865 |
'PBMC3 - Calinski_Harabasz (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 297.808015 | 700.217364 | 456.227491 | 496.1459 | 574.480162 | 400.155157 |
'PBMC3 - davies_bouldin (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.985684 | 1.442211 | 2.995741 | 2.362272 | 2.426385 | 2.598886 |
'PBMC3 - Silhuette from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | -0.029642 | 0.377306 | 0.25164 | 0.174206 | 0.275693 | 0.088576 |
'PBMC3 - Calinski_Harabasz from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 262.360318 | 739.44889 | 472.946903 | 516.505211 | 586.79879 | 354.586581 |
'PBMC3 - davies_bouldin from Prob. (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 11.904188 | 1.372576 | 2.656352 | 2.572155 | 2.308715 | 2.895497 |
'PBMC3 - matching celltypist labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.593633 | 0.350472 | 0.645190 | 0.549707 | 0.432543 | 0.575952 | 0.324842 |
scanpy | 0.712471 | 0.545890 | 0.759378 | 0.671021 | 0.609493 | 0.757648 | 0.490309 |
scvi-tools | 0.734566 | 0.564923 | 0.767509 | 0.704334 | 0.623340 | 0.727403 | 0.534165 |
seurat | 0.771725 | 0.587107 | 0.823703 | 0.725918 | 0.645977 | 0.791597 | 0.527144 |
COTAN | 0.670438 | 0.459746 | 0.737597 | 0.614488 | 0.530538 | 0.653153 | 0.430941 |
= 'celltypist',dataset="PBMC4") print_scores(tuning
'PBMC4 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 16 | 18 | 18 | 19 | 15 |
'PBMC4 - Silhuette (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.039137 | 0.094551 | 0.065347 | 0.129055 | 0.131231 | 0.099607 |
'PBMC4 - Calinski_Harabasz (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 295.870856 | 361.837214 | 295.550588 | 369.578328 | 361.987263 | 327.83418 |
'PBMC4 - davies_bouldin (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 2.558795 | 1.645136 | 2.486482 | 1.950227 | 2.225131 | 2.847014 |
'PBMC4 - Silhuette from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.046714 | 0.42606 | 0.093135 | 0.170808 | 0.186825 | 0.062989 |
'PBMC4 - Calinski_Harabasz from Prob. (higher is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 248.702625 | 497.518258 | 282.658631 | 374.867341 | 347.797347 | 303.69576 |
'PBMC4 - davies_bouldin from Prob. (lower is better)'
monocle | celltypist | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.291098 | 1.09626 | 3.338571 | 2.073425 | 2.297124 | 2.483086 |
'PBMC4 - matching celltypist labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.686023 | 0.421456 | 0.747151 | 0.634141 | 0.512790 | 0.699270 | 0.376040 |
scanpy | 0.730083 | 0.473671 | 0.809851 | 0.664619 | 0.562408 | 0.777976 | 0.406571 |
scvi-tools | 0.752863 | 0.501079 | 0.830838 | 0.688268 | 0.587423 | 0.808372 | 0.426864 |
seurat | 0.759689 | 0.493258 | 0.846652 | 0.688926 | 0.582261 | 0.817627 | 0.414649 |
COTAN | 0.724775 | 0.450018 | 0.766000 | 0.687761 | 0.534712 | 0.666348 | 0.429080 |
Matching antibody clusters number
= 'antibody',dataset="PBMC1") print_scores(tuning
'PBMC1 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 9 | 11 | 10 | 11 | 13 |
'PBMC1 - Silhuette (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.123097 | 0.069567 | 0.097602 | 0.094258 | 0.171754 | 0.157886 |
'PBMC1 - Calinski_Harabasz (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 203.253687 | 131.570445 | 193.550388 | 189.978034 | 237.429051 | 201.498385 |
'PBMC1 - davies_bouldin (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 2.027098 | 2.515129 | 1.886001 | 1.890236 | 1.677632 | 1.976209 |
'PBMC1 - Silhuette from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.101586 | 0.245087 | 0.297043 | 0.261342 | 0.218776 | 0.162724 |
'PBMC1 - Calinski_Harabasz from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 184.932102 | 137.566711 | 202.80892 | 206.264825 | 214.61793 | 186.472326 |
'PBMC1 - davies_bouldin from Prob. (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 2.395779 | 2.16692 | 1.863548 | 1.700282 | 1.947515 | 2.059359 |
'PBMC1 - matching antibody labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.724319 | 0.641765 | 0.727281 | 0.721381 | 0.707943 | 0.753325 | 0.665295 |
scanpy | 0.746106 | 0.652841 | 0.792721 | 0.704669 | 0.717629 | 0.829289 | 0.621003 |
scvi-tools | 0.757587 | 0.658079 | 0.782127 | 0.734540 | 0.721084 | 0.800236 | 0.649760 |
seurat | 0.749425 | 0.642110 | 0.790860 | 0.712116 | 0.708375 | 0.813318 | 0.616972 |
COTAN | 0.721299 | 0.633200 | 0.772738 | 0.676282 | 0.700712 | 0.798916 | 0.614579 |
= 'antibody',dataset="PBMC2") print_scores(tuning
'PBMC2 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 11 | 9 | 11 | 12 | 11 |
'PBMC2 - Silhuette (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | -0.037233 | 0.053999 | 0.047735 | -0.01373 | 0.107504 | 0.078974 |
'PBMC2 - Calinski_Harabasz (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 183.966932 | 197.645911 | 256.298442 | 177.876897 | 291.531393 | 203.655796 |
'PBMC2 - davies_bouldin (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.431006 | 2.999071 | 2.597576 | 5.123237 | 1.843028 | 3.072363 |
'PBMC2 - Silhuette from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.037684 | 0.242566 | 0.260903 | 0.074589 | 0.359083 | 0.234126 |
'PBMC2 - Calinski_Harabasz from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 187.161715 | 197.483785 | 259.897112 | 187.848746 | 297.046578 | 208.763542 |
'PBMC2 - davies_bouldin from Prob. (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 6.262231 | 2.570934 | 2.234808 | 4.149191 | 1.494746 | 2.238186 |
'PBMC2 - matching antibody labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.592156 | 0.458950 | 0.611387 | 0.574098 | 0.545023 | 0.612345 | 0.485102 |
scanpy | 0.749075 | 0.650770 | 0.757603 | 0.740737 | 0.708423 | 0.779752 | 0.643619 |
scvi-tools | 0.674668 | 0.578230 | 0.709325 | 0.643240 | 0.647236 | 0.750492 | 0.558185 |
seurat | 0.762283 | 0.762523 | 0.779418 | 0.745886 | 0.802406 | 0.838975 | 0.767431 |
COTAN | 0.738004 | 0.674191 | 0.688420 | 0.795286 | 0.744862 | 0.649628 | 0.854057 |
= 'antibody',dataset="PBMC3") print_scores(tuning
'PBMC3 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 12 | 14 | 13 | 14 | 12 |
'PBMC3 - Silhuette (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | -0.040176 | 0.037871 | 0.034398 | 0.001717 | 0.076119 | 0.066886 |
'PBMC3 - Calinski_Harabasz (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 303.562678 | 309.45087 | 332.440157 | 368.948628 | 434.276887 | 338.97586 |
'PBMC3 - davies_bouldin (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.604809 | 3.04294 | 3.434343 | 3.282334 | 2.612535 | 3.274719 |
'PBMC3 - Silhuette from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.074904 | 0.205664 | 0.23307 | 0.17138 | 0.305558 | 0.220006 |
'PBMC3 - Calinski_Harabasz from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 298.489075 | 331.435612 | 382.997054 | 438.502899 | 489.196185 | 393.696152 |
'PBMC3 - davies_bouldin from Prob. (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 12.995929 | 2.780055 | 2.882473 | 4.362136 | 1.884472 | 2.454523 |
'PBMC3 - matching antibody labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.644484 | 0.537094 | 0.639574 | 0.649469 | 0.598577 | 0.600917 | 0.596245 |
scanpy | 0.729603 | 0.683244 | 0.752370 | 0.708173 | 0.724410 | 0.784386 | 0.669020 |
scvi-tools | 0.726492 | 0.670063 | 0.728625 | 0.724372 | 0.713239 | 0.729596 | 0.697249 |
seurat | 0.764843 | 0.698339 | 0.799673 | 0.732920 | 0.738860 | 0.829783 | 0.657901 |
COTAN | 0.691237 | 0.607331 | 0.643954 | 0.746015 | 0.676860 | 0.575699 | 0.795798 |
= 'antibody',dataset="PBMC4") print_scores(tuning
'PBMC4 - number of clusters'
monocle | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|
0 | 12 | 11 | 10 | 13 | 10 |
'PBMC4 - Silhuette (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.002385 | -0.036094 | 0.050455 | 0.05113 | 0.077562 | 0.045683 |
'PBMC4 - Calinski_Harabasz (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 235.482647 | 197.341814 | 270.202541 | 343.073339 | 320.138454 | 229.318527 |
'PBMC4 - davies_bouldin (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.083971 | 4.423945 | 2.822422 | 2.12666 | 2.473315 | 3.226592 |
'PBMC4 - Silhuette from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 0.049133 | 0.172283 | 0.157433 | 0.088787 | 0.040314 | 0.088272 |
'PBMC4 - Calinski_Harabasz from Prob. (higher is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 200.437686 | 236.062289 | 249.06549 | 280.961153 | 300.480476 | 200.115128 |
'PBMC4 - davies_bouldin from Prob. (lower is better)'
monocle | antibody | scanpy | scvi-tools | seurat | COTAN | |
---|---|---|---|---|---|---|
0 | 3.494187 | 3.01011 | 2.595129 | 2.489428 | 2.124028 | 2.931601 |
'PBMC4 - matching antibody labels'
NMI | ARI | homogeneity | completeness | fowlkes_mallows | precision | recall | |
---|---|---|---|---|---|---|---|
monocle | 0.644898 | 0.463759 | 0.695399 | 0.601235 | 0.559620 | 0.723970 | 0.432579 |
scanpy | 0.722095 | 0.587951 | 0.761954 | 0.686198 | 0.664451 | 0.799173 | 0.552440 |
scvi-tools | 0.733942 | 0.592083 | 0.764983 | 0.705322 | 0.667996 | 0.803599 | 0.555275 |
seurat | 0.723924 | 0.571960 | 0.786070 | 0.670884 | 0.652635 | 0.815198 | 0.522489 |
COTAN | 0.677301 | 0.519220 | 0.678168 | 0.676436 | 0.606874 | 0.658843 | 0.559005 |
Check cellTypist vs Antibody
def compute_clustering_scores(output_dir, dataset):#celltypist_df, antibody_df,
# Merge the dataframes on the common 'cell' column
#cotan_df = pd.read_csv(f'{DIR}{dataset}/COTAN/antibody/clustering_labels.csv', index_col=0)
#display("Cotan clusters objetc dimension ",cotan_df.shape)
#display("----------------------------------------")
= pd.read_csv(f'{DIR}{dataset}/celltypist/celltypist_labels.csv', index_col=0)
celltypist_df = celltypist_df.index.str[:-2]
celltypist_df.index = pd.read_csv(f'{DIR}{dataset}/antibody_annotation/antibody_labels_postproc.csv', index_col=0)
antibody_df #antibody_df = labels_df.merge(antibody_df, how='inner', on='cell')
#all_in_antibody = celltypist_df.index.isin(antibody_df.index).all()
#all_in_celltypist = antibody_df.index.isin(celltypist_df.index).all()
#display("All celltypist indices in antibody: ",all_in_antibody, celltypist_df.index.isin(antibody_df.index).sum(),celltypist_df.shape)
#display("All antibody indices in cellTypist:", all_in_celltypist)
#display("----------------------------------------")
= celltypist_df.merge(antibody_df, how='inner',left_index=True, right_index=True)# on='cell')
merged_df
= ['cluster_celltypist','cluster_antibody']
merged_df.columns
# Initialize scores dictionary
= {
scores 'NMI': normalized_mutual_info_score(merged_df['cluster_celltypist'], merged_df['cluster_antibody'], average_method='arithmetic'),
'ARI': adjusted_rand_score(merged_df['cluster_celltypist'], merged_df['cluster_antibody']),
'Homogeneity': homogeneity_score(merged_df['cluster_celltypist'], merged_df['cluster_antibody']),
'Completeness': completeness_score(merged_df['cluster_celltypist'], merged_df['cluster_antibody']),
'Fowlkes_Mallows': fowlkes_mallows_score(merged_df['cluster_celltypist'], merged_df['cluster_antibody'])
}
# Convert scores to DataFrame
= pd.DataFrame([scores])
scores_df
# Save scores to CSV and LaTeX
#scores_df.to_csv(f'{output_dir}{dataset}/clustering_comparison_scores.csv')
#scores_df.to_latex(f'{output_dir}{dataset}/clustering_comparison_scores.tex')
# Display scores DataFrame
display(scores_df)
for dataset in DATASET_NAMES:
#display('------------------------------')
f'{dataset} - Clustering Comparison between CellTypist and Antibody')
display(
# Assuming celltypist_df and antibody_df are defined elsewhere and available here
compute_clustering_scores(DIR, dataset)
'PBMC1 - Clustering Comparison between CellTypist and Antibody'
NMI | ARI | Homogeneity | Completeness | Fowlkes_Mallows | |
---|---|---|---|---|---|
0 | 0.752326 | 0.731095 | 0.708308 | 0.802178 | 0.78126 |
'PBMC2 - Clustering Comparison between CellTypist and Antibody'
NMI | ARI | Homogeneity | Completeness | Fowlkes_Mallows | |
---|---|---|---|---|---|
0 | 0.659259 | 0.481537 | 0.667725 | 0.651004 | 0.585734 |
'PBMC3 - Clustering Comparison between CellTypist and Antibody'
NMI | ARI | Homogeneity | Completeness | Fowlkes_Mallows | |
---|---|---|---|---|---|
0 | 0.693433 | 0.555502 | 0.693429 | 0.693436 | 0.618105 |
'PBMC4 - Clustering Comparison between CellTypist and Antibody'
NMI | ARI | Homogeneity | Completeness | Fowlkes_Mallows | |
---|---|---|---|---|---|
0 | 0.751294 | 0.7252 | 0.728817 | 0.775201 | 0.776972 |
Summary
External measures
def load_scores(tuning, dataset):
= pd.read_csv(f'{DIR}{dataset}/scores_{tuning}.csv')
scores = scores.rename(columns={"Unnamed: 0": "tool"})
scores 'tuning'] = tuning
scores[return scores
= ['PBMC1', 'PBMC2', 'PBMC3', 'PBMC4']
datasets = ['default_celltypist', 'default_antibody', 'celltypist_celltypist', 'antibody_antibody']
tunings
= []
scores_list
# Concatenate all scores into one DataFrame
for dataset in datasets:
for tuning in tunings:
= load_scores(tuning, dataset)
scores 'dataset'] = dataset
scores[
scores_list.append(scores)
= pd.concat(scores_list)
all_scores
# Prepare data for plotting
= all_scores.melt(id_vars=['tool', 'tuning', 'dataset'], var_name='score', value_name='value')
all_scores_melted
"talk")
sns.set_context(# Define custom colors
= {
custom_palette "seurat": "#4575B4",
"monocle": "#DAABE9",
"scanpy": "#7F9B5C",
"COTAN": "#F73604",
"scvi-tools": "#B6A18F"
}
= sns.FacetGrid(all_scores_melted, row='score', col='tuning', sharey=False, height=4, aspect=1.3)
g map(sns.pointplot, 'tool', 'value', palette=custom_palette,capsize=0.2, errwidth=2)
g.
# Set titles and labels
="{col_name}", row_template="{row_name}")
g.set_titles(col_template"Tool", "Score Value")
g.set_axis_labels(=1.4)
plt.subplots_adjust(top#g.fig.suptitle('Comparison of Clustering Tools by Various Scores and Conditions')
# Rotate x-axis labels
for ax in g.axes.flatten():
=45)
plt.setp(ax.get_xticklabels(), rotation
f"{DIR}ClusteringToolsComparison{min_size_cluster}.pdf")
g.savefig( plt.show()
Internal measures
# Load your data (assuming you have CSV files for the scores)
def load_scores(tuning, dataset, score_type):
= f'{DIR}{dataset}/{tuning}_{score_type}.csv'
file_path print(f"Loading {file_path}")
= pd.read_csv(file_path, header=0) # Read the CSV file without an index column
scores = scores.melt(var_name='tool', value_name='value')
scores_melted 'tuning'] = tuning
scores_melted['dataset'] = dataset
scores_melted['score_type'] = score_type
scores_melted[return scores_melted
= ['PBMC1', 'PBMC2', 'PBMC3', 'PBMC4']
datasets = ['default', 'celltypist', 'antibody']
tunings = ['silhouette', 'davies_bouldin','Calinski_Harabasz','silhouette_fromProb', 'davies_bouldin_fromProb','Calinski_Harabasz_fromProb']
score_types = []
scores_list
# Concatenate all scores into one DataFrame
for dataset in datasets:
for tuning in tunings:
for score_type in score_types:
= load_scores(tuning, dataset, score_type)
scores
scores_list.append(scores)
= pd.concat(scores_list)
all_scores
# Debug: Check the loaded data
print(all_scores.head())
# Define custom colors
= {
custom_palette "seurat": "#4575B4",
"monocle": "#DAABE9",
"scanpy": "#7F9B5C",
"COTAN": "#F73604",
"scvi-tools": "#B6A18F"
}
# Filter for silhouette and davies_bouldin scores
= all_scores[all_scores['score_type'] == 'silhouette']
silhouette_scores = all_scores[all_scores['score_type'] == 'davies_bouldin']
davies_bouldin_scores = all_scores[all_scores['score_type'] == 'Calinski_Harabasz']
Calinski_Harabasz_scores = all_scores[all_scores['score_type'] == 'silhouette_fromProb']
silhouette_scores_fromProb = all_scores[all_scores['score_type'] == 'davies_bouldin_fromProb']
davies_bouldin_scores_fromProb = all_scores[all_scores['score_type'] == 'Calinski_Harabasz_fromProb']
Calinski_Harabasz_scores_fromProb
# Plot Silhouette scores
= sns.FacetGrid(silhouette_scores, col='tuning', sharey=False, height=4, aspect=1.8)
g1 map(sns.pointplot, 'tool', 'value', palette=custom_palette, order=[ "monocle", "scanpy", "scvi-tools","seurat","COTAN"],capsize=0.2, errwidth=2)
g1.="{col_name}")
g1.set_titles(col_template"Tool", "Silhouette Score")
g1.set_axis_labels('Silhouette Scores by Tool and Tuning Condition', y=1.25)
g1.fig.suptitle(=0.85)
plt.subplots_adjust(top# Rotate x-axis labels
for ax in g1.axes.flatten():
=45)
plt.setp(ax.get_xticklabels(), rotation
# Plot Davies-Bouldin scores
= sns.FacetGrid(davies_bouldin_scores, col='tuning', sharey=False, height=4, aspect=1.8)
g2 map(sns.pointplot, 'tool', 'value', palette=custom_palette, order=["monocle", "scanpy", "scvi-tools","seurat","COTAN"],capsize=0.2, errwidth=2)
g2.="{col_name}")
g2.set_titles(col_template"Tool", "Davies-Bouldin Score")
g2.set_axis_labels('Davies-Bouldin Scores by Tool and Tuning Condition', y=1.85)
g2.fig.suptitle(=1.5)
plt.subplots_adjust(top# Rotate x-axis labels
for ax in g2.axes.flatten():
=45)
plt.setp(ax.get_xticklabels(), rotation
# Plot Calinski_Harabasz scores
= sns.FacetGrid(Calinski_Harabasz_scores, col='tuning', sharey=False, height=4, aspect=1.8)
g3 map(sns.pointplot, 'tool', 'value', palette=custom_palette, order=["monocle", "scanpy", "scvi-tools","seurat","COTAN"],capsize=0.2, errwidth=2)
g3.="{col_name}")
g3.set_titles(col_template"Tool", "Calinski_Harabasz Score")
g3.set_axis_labels('Calinski Harabasz Scores by Tool and Tuning Condition', y=1.85)
g3.fig.suptitle(=1.5)
plt.subplots_adjust(top# Rotate x-axis labels
for ax in g3.axes.flatten():
=45)
plt.setp(ax.get_xticklabels(), rotation
# Plot Silhouette scores
= sns.FacetGrid(silhouette_scores_fromProb, col='tuning', sharey=False, height=4, aspect=1.8)
g4 map(sns.pointplot, 'tool', 'value', palette=custom_palette, order=[ "monocle", "scanpy", "scvi-tools","seurat","COTAN"],capsize=0.2, errwidth=2)
g4.="{col_name}")
g4.set_titles(col_template"Tool", "Silhouette Score")
g4.set_axis_labels('Silhouette Scores From Prob. by Tool and Tuning Condition', y=1.25)
g4.fig.suptitle(=0.85)
plt.subplots_adjust(top# Rotate x-axis labels
for ax in g4.axes.flatten():
=45)
plt.setp(ax.get_xticklabels(), rotation
# Plot Davies-Bouldin scores
= sns.FacetGrid(davies_bouldin_scores_fromProb, col='tuning', sharey=False, height=4, aspect=1.8)
g5 map(sns.pointplot, 'tool', 'value', palette=custom_palette, order=["monocle", "scanpy", "scvi-tools","seurat","COTAN"],capsize=0.2, errwidth=2)
g5.="{col_name}")
g5.set_titles(col_template"Tool", "Davies-Bouldin Score")
g5.set_axis_labels('Davies-Bouldin Scores From Prob. by Tool and Tuning Condition', y=1.85)
g5.fig.suptitle(=1.5)
plt.subplots_adjust(top# Rotate x-axis labels
for ax in g5.axes.flatten():
=45)
plt.setp(ax.get_xticklabels(), rotation
# Plot Calinski_Harabasz scores
= sns.FacetGrid(Calinski_Harabasz_scores_fromProb, col='tuning', sharey=False, height=4, aspect=1.8)
g6 map(sns.pointplot, 'tool', 'value', palette=custom_palette, order=["monocle", "scanpy", "scvi-tools","seurat","COTAN"],capsize=0.2, errwidth=2)
g6.="{col_name}")
g6.set_titles(col_template"Tool", "Calinski_Harabasz Score")
g6.set_axis_labels('Calinski Harabasz Scores From Prob. by Tool and Tuning Condition', y=1.85)
g6.fig.suptitle(=1.5)
plt.subplots_adjust(top# Rotate x-axis labels
for ax in g6.axes.flatten():
=45)
plt.setp(ax.get_xticklabels(), rotation
f"{DIR}Silhouette{min_size_cluster}.pdf")
g1.savefig(f"{DIR}Calinski_Harabasz{min_size_cluster}.pdf")
g2.savefig(f"{DIR}Davies_Bouldin{min_size_cluster}.pdf")
g3.savefig(
f"{DIR}SilhouetteFromProb{min_size_cluster}.pdf")
g4.savefig(f"{DIR}Calinski_HarabaszFromProb{min_size_cluster}.pdf")
g5.savefig(f"{DIR}Davies_BouldinFromProb{min_size_cluster}.pdf")
g6.savefig(
plt.show()
Loading Data/PBMC1/default_silhouette.csv
Loading Data/PBMC1/default_davies_bouldin.csv
Loading Data/PBMC1/default_Calinski_Harabasz.csv
Loading Data/PBMC1/default_silhouette_fromProb.csv
Loading Data/PBMC1/default_davies_bouldin_fromProb.csv
Loading Data/PBMC1/default_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC1/celltypist_silhouette.csv
Loading Data/PBMC1/celltypist_davies_bouldin.csv
Loading Data/PBMC1/celltypist_Calinski_Harabasz.csv
Loading Data/PBMC1/celltypist_silhouette_fromProb.csv
Loading Data/PBMC1/celltypist_davies_bouldin_fromProb.csv
Loading Data/PBMC1/celltypist_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC1/antibody_silhouette.csv
Loading Data/PBMC1/antibody_davies_bouldin.csv
Loading Data/PBMC1/antibody_Calinski_Harabasz.csv
Loading Data/PBMC1/antibody_silhouette_fromProb.csv
Loading Data/PBMC1/antibody_davies_bouldin_fromProb.csv
Loading Data/PBMC1/antibody_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC2/default_silhouette.csv
Loading Data/PBMC2/default_davies_bouldin.csv
Loading Data/PBMC2/default_Calinski_Harabasz.csv
Loading Data/PBMC2/default_silhouette_fromProb.csv
Loading Data/PBMC2/default_davies_bouldin_fromProb.csv
Loading Data/PBMC2/default_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC2/celltypist_silhouette.csv
Loading Data/PBMC2/celltypist_davies_bouldin.csv
Loading Data/PBMC2/celltypist_Calinski_Harabasz.csv
Loading Data/PBMC2/celltypist_silhouette_fromProb.csv
Loading Data/PBMC2/celltypist_davies_bouldin_fromProb.csv
Loading Data/PBMC2/celltypist_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC2/antibody_silhouette.csv
Loading Data/PBMC2/antibody_davies_bouldin.csv
Loading Data/PBMC2/antibody_Calinski_Harabasz.csv
Loading Data/PBMC2/antibody_silhouette_fromProb.csv
Loading Data/PBMC2/antibody_davies_bouldin_fromProb.csv
Loading Data/PBMC2/antibody_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC3/default_silhouette.csv
Loading Data/PBMC3/default_davies_bouldin.csv
Loading Data/PBMC3/default_Calinski_Harabasz.csv
Loading Data/PBMC3/default_silhouette_fromProb.csv
Loading Data/PBMC3/default_davies_bouldin_fromProb.csv
Loading Data/PBMC3/default_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC3/celltypist_silhouette.csv
Loading Data/PBMC3/celltypist_davies_bouldin.csv
Loading Data/PBMC3/celltypist_Calinski_Harabasz.csv
Loading Data/PBMC3/celltypist_silhouette_fromProb.csv
Loading Data/PBMC3/celltypist_davies_bouldin_fromProb.csv
Loading Data/PBMC3/celltypist_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC3/antibody_silhouette.csv
Loading Data/PBMC3/antibody_davies_bouldin.csv
Loading Data/PBMC3/antibody_Calinski_Harabasz.csv
Loading Data/PBMC3/antibody_silhouette_fromProb.csv
Loading Data/PBMC3/antibody_davies_bouldin_fromProb.csv
Loading Data/PBMC3/antibody_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC4/default_silhouette.csv
Loading Data/PBMC4/default_davies_bouldin.csv
Loading Data/PBMC4/default_Calinski_Harabasz.csv
Loading Data/PBMC4/default_silhouette_fromProb.csv
Loading Data/PBMC4/default_davies_bouldin_fromProb.csv
Loading Data/PBMC4/default_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC4/celltypist_silhouette.csv
Loading Data/PBMC4/celltypist_davies_bouldin.csv
Loading Data/PBMC4/celltypist_Calinski_Harabasz.csv
Loading Data/PBMC4/celltypist_silhouette_fromProb.csv
Loading Data/PBMC4/celltypist_davies_bouldin_fromProb.csv
Loading Data/PBMC4/celltypist_Calinski_Harabasz_fromProb.csv
Loading Data/PBMC4/antibody_silhouette.csv
Loading Data/PBMC4/antibody_davies_bouldin.csv
Loading Data/PBMC4/antibody_Calinski_Harabasz.csv
Loading Data/PBMC4/antibody_silhouette_fromProb.csv
Loading Data/PBMC4/antibody_davies_bouldin_fromProb.csv
Loading Data/PBMC4/antibody_Calinski_Harabasz_fromProb.csv
tool value tuning dataset score_type
0 Unnamed: 0 0.000000 default PBMC1 silhouette
1 monocle 0.106025 default PBMC1 silhouette
2 scanpy 0.062012 default PBMC1 silhouette
3 scvi-tools 0.087622 default PBMC1 silhouette
4 seurat 0.168956 default PBMC1 silhouette